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Abstract

Recursive hierarchical embedding allows humans to generate multiple hierarchical levels using
simple rules. We can acquire recursion from exposure to linguistic and visual examples, but only
develop the ability to understand “multiple-level” structures like “[[second] red] ball]” after mastering
“same-level” conjunctions like “[second] and [red] ball.” Whether we can also learn recursion in motor
production remains unexplored. Here, we tested 40 adults’ ability to learn and generate sequences
of finger movements using “multiple-level” recursion and “same-level” iteration rules (like linguistic
conjunction). Rule order was counterbalanced. First, they learned the generative rules (without
explicit rule instructions or feedback) by executing examples of motor sequences based on visual cues
displayed on the screen (learning). Second, participants were asked to discriminate between correct
and incorrect motor sequences beyond those to which they were previously exposed (discrimination).
Finally, they were asked to use the rules to generate new hierarchical levels consistent with the
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previously given (generation). We repeated the procedure (all three phases) on 2 days, allowing for a
night of sleep. We found that most participants could discriminate correct/incorrect sequences based
on recursive rules and use recursive rules to generate new hierarchical levels in motor sequences,
but mostly on the second day of testing, and when they had acquired iterative before recursive rules.
This aligns with previous literature on vision and language and with literature showing that sleep is
necessary to generate abstract knowledge of motor sequences. Lastly, we found that the ability to
discriminate well-formed motor sequences using recursion was insufficient for motor generativity.

Keywords: Recursion; Iteration; Motor production; Procedural learning; Rule acquisition

1. Introduction

The capacity to represent and generate multilayered hierarchical structures is a fundamental
aspect of human cognition available in language (Berwick, Friederici, Chomsky, & Bolhuis,
2013; Chomsky, 1957; Friederici, Chomsky, Berwick, Moro, & Bolhuis, 2017), music (Che-
ung, Meyer, Friederici, & Koelsch, 2018; Jackendoff & Lerdahl, 2006; Koelsch, Rohrmeier,
Torrecuso, & Jentschke, 2013; Lerdahl & Jackendoff, 1983), complex action sequencing
(Badre & D’Esposito, 2009; Fitch & Martins, 2014; Lashley, 1951), theory of mind (De Vil-
liers, Hobbs, & Hollebrandse, 2014; De Villiers & De Villiers, 2014), and social organization
(Ferguson, 2018; Redhead & Power, 2022; Seyfarth & Cheney, 2017). In these domains, hier-
archies can be generated using recursive hierarchical embedding, which yields complex struc-
tures when applying simple embedding rules to its own output (Fitch, 2010; Martins, 2012).

Recursion is a term used in various fields with multiple definitions (Fitch, 2010; Lobina,
2011; Martins, 2012; Martins & Fitch, 2014). Recognizing this multiplicity, it is essential to
specify how we are using it, even if other definitions are possible within cognitive sciences. In
particular, we focus on recursive hierarchical embedding, which has two components: embed-
ding and recursion. Hierarchical embedding is a process through which an element, or set of
elements, is made “subordinate” to another “dominant” element. For instance, in English,
when the word “film” is embedded in “committee” to form [[film] committee], it refers to a
kind of committee, not a kind of film. Recursion is the process through which a function’s
output is used again as input to the same function. For instance, the natural numbers are
described by the recursive function N; = N;_; + 1, which generates the infinite set {1, 2,
3,...}. By combining these two properties—recursion and hierarchical embedding—we can
generate hierarchies of unbounded depth. For instance, by using the recursive embedding
rule NP— [[NP] NP], we can add “student” to “film committee” and obtain [[[student] film]
committee] and so on.

Also crucial is clarifying the level of analysis relevant for empirical investigation. As
reviewed elsewhere, recursion has been discussed at the levels of (1) generative processes,
(2) stimuli, and (3) cognitive representations (Lobina, 2011; Martins, 2012). Empirically, the
first two levels are ambiguous because generative processes are often opaque, and embedded
structures may also be generated without complex cognition, for example, tree branches and
bacterial growth patterns. For this reason, we focus on whether participants can extract the
regularities of hierarchical stimuli to generate new levels beyond the given (Martins, 2012).
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Recursion has long been considered a core component of human cognition. While ini-
tially thought to be specific to linguistic syntax (Berwick & Chomsky, 2016; Chomsky, 1957;
Friederici et al., 2017; Hauser et al., 2002), more and more evidence suggests that it is a
widely available mechanism to parse symbolic structures, allowing mental programs to run
across domains (Asano, Boeckx, & Seifert, 2021; Dehaene, Al Roumi, Lakretz, Planton, &
Sablé-Meyer, 2022). For example, in language, recursion is not only present in syntax but
also at the level of discourse (Everett, 2012; Levinson, 2013). Beyond language, recursive
rules have been proposed to create intricate musical compositions (Lerdahl & Jackendoff,
1983; Rohrmeier, 2011) and complex visual structures (Fischmeister, Martins, Beisteiner, &
Fitch, 2017; Martins, 2012; Martins et al., 2014; Martins, Laaha, Freiberger, Choi, & Fitch,
2014). Moreover, recursion has been proposed as a cognitive mechanism that enables humans
to plan elaborate sequences of actions (Jackendoff, 2009, 2011). While recursion has been
empirically studied in the context of language, vision, music, and action planning, its role
in motor production remains relatively unexplored (Martins, Bianco, Sammler, & Villringer,
2019). This paper investigates the acquisition and utilization of recursive rules in produc-
ing motor sequences, extending our understanding of hierarchical cognition. It also offers a
novel paradigm to the research program of determining whether recursion is domain-general
or multi-domain-specific by systematically mapping the domains in which it is available and
the commonalities and differences across domains.

Investigations into recursion have often utilized artificial grammar learning (AGL)
paradigms (Reber, 1967) to explore the ability to learn and discriminate self-embedded
structures in humans and other animals (Ferrigno, Cheyette, Piantadosi, & Cantlon, 2020;
Fitch & Hauser, 2004; Gentner, Fenn, Margoliash, & Nusbaum, 2006; Liao, Brecht, Johnston,
& Nieder, 2022). For example, parsing the string AABB as a pattern A;A;B,B; requires
representing long-distance dependencies A;...B that go beyond the adjacent level, crucially
distinguishing the underlying representation from a simple sequence (Uddén, Martins,
Zuidema, & Fitch, 2020). Furthermore, the ability to generalize the pattern A"B" to levels
beyond the given—for example, A;A;A3;B3;B,B—further suggests that the underlying
generative grammar is being represented.

In the early work, only humans were shown to acquire the underlying center-embedded
representations of the kind A"B" (Fitch & Hauser, 2004). However, recent studies involv-
ing monkeys (Ferrigno et al., 2020) and crows (Liao et al., 2022) have revealed that these
species can perform well in these tasks, albeit after extensive training. The task developed in
these experiments is particularly powerful, requiring participants to actively generate motor
sequences with an underlying A"B" structure by tapping figures on a touch screen in the
correct order.

The conclusion that animals can represent recursion, however, has been disputed. First, the
acquisition patterns suggest that simpler cognitive mechanisms, such as associative learning,
might better explain animal performance (Rey & Fagot, 2023). Second, Recurrent Neural
Network models suggest that nonrecursive processes can also represent long-distance depen-
dencies after extensive training (Lakretz & Dehaene, 2021). Third, AGL paradigms have
additional limitations, as center-embedded structures are challenging to comprehend if reach-
ing three to four embeddings (Christiansen & Chater, 1999) because they impose significant
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working memory demands. Crucially, the human ability to parse center-embedded structures
correlates with working memory capacity (Ferrigno et al., 2020). Finally, both recursive and
nonrecursive (iterative) computational processes (Lobina, 2011; M. D. Martins, Martins, &
Fitch, 2016; van der Hulst, 2010) can formally generate center-embedded structures. This is
understood as the competence-performance problem and posits that adequate performance in
processing center-embedded structures is insufficient evidence for the competence of recur-
sion, that is, of an underlying recursive computation (Lobina, 2011). However, the capacity
to parse long-distance dependencies demonstrates at least the ability to form graph represen-
tations above simple sequences (Uddén et al., 2020).

To circumvent these limitations and focus on the competence for recursion, we developed a
general approach based on generating hierarchical fractal structures (Martins, 2012; Martins
et al., 2016). Fractals have similar structural properties across multiple hierarchical levels
and can be generated by repeatedly applying the same recursive rules (Mandelbrot, 1977;
Martins, 2012). Interestingly, they can also be generated using more straightforward “itera-
tive” nonrecursive rules (Martins, 2012; Martins et al., 2016), which add multiple elements
within the same hierarchical level without generating new levels. Our approach contrasts how
identical fractal structures are represented when generated by different rules—recursion and
iteration. Importantly, while fractals tend to infinity, we use the term here as a placeholder for
a structure that exhibits self-similarity across hierarchical levels. While an approximation,
this placeholder is useful for empirical investigation.

This approach has been promising for isolating the behavioral and neural processes
specifically involved in representing recursive generative rules across domains (Martins,
2012; Martins et al., 2016). For example, principal component analysis has shown that the
ability to learn and use recursive rules in music, vision, and action planning clusters together
within a component orthogonal to domain-specific nonrecursive tasks (Martins, Gingras,
Puig-Waldmueller, & Fitch, 2017). This suggests common underlying cognitive mechanisms
for recursion across domains. Furthermore, we have observed a correlation between the
ability to parse 2-level center-embedded linguistic sentences and visual recursion (Martins
et al., 2019). Our neuroimaging data also suggest that the neural networks active in acquiring
recursive and hierarchical rules in the visual and logic domains are similar to those involved
in linguistic recursion (Martins et al., 2019; Scholz, Villringer, & Martins, 2023).

Finally, our research in the visual domain has revealed an interesting developmental trajec-
tory that mimics language. In language, the acquisition of recursion in several linguistic forms
(e.g., [[second] red] ball), including adjectives, possessives, verbal compounds, and sentence
complements (Roeper, 2011; Yang, Hu, Fan, Dong, & Jeschull, 2022) crucially scaffolds the
prior acquisition of conjunction—the understanding of words as at the same hierarchical level
(e.g., [second] and [red] ball). In other words, prior experience with “same-level” structures is
necessary for acquiring recursion and creating hierarchical dependencies. Similarly, in vision,
we have found that children’s acquisition of “multiple-level” visual recursion dramatically
improves after the experience with “same-level” visual iteration, which adds elements within
a fixed hierarchical level without generating new levels (Martins et al., 2014). Attempts to
acquire recursion before iteration have shown a detrimental impact on recursion performance.
Another salient observation is that while recursive rules in vision are more challenging to
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learn than iteration, once acquired, they seem to be more efficient in (1) reducing demands in
visuospatial working memory (Martins et al., 2016), (2) enhancing the capacity to detect fine-
grained mistakes (Martins et al., 2014), and (3) reducing neural activity in the frontoparietal
regions associated with cognitive effort (Fischmeister et al., 2017).

We extend this work to the domain of motor recursion. While the hierarchical organization
of goal-oriented action and its cognitive underpinnings has been previously characterized
(Badre, 2008; Fazio et al., 2009; Koechlin & Jubault, 2006; Pulvermiiller & Fadiga, 2010),
it is unclear whether humans can also acquire the representation of hierarchically organized
motor sequences when these are not embedded within goal hierarchies. Previous research
shows that humans can utilize recursive rules to generate motor fractals when explicitly given
the rules and after extensive training (Martins et al., 2019). This capacity correlates with
activity in brain areas involved in motor imagery. Crucially, here, we test whether humans
can also acquire those representations when the rules are not explicitly provided and no trial
feedback is given. Furthermore, we characterize the underlying learning dynamics across 2
days as abstract representations of motor sequences are facilitated after sleep consolidation
(Fischer, Nitschke, Melchert, Erdmann, & Born, 2005; Fogel et al., 2017).

As mentioned above, it is particularly challenging to devise convincing empirical
approaches to differentiate between hierarchical representations and alternatives such as basic
iteration or sequential processing (Uddén et al., 2020). It has recently been proposed that
studies aiming at isolating cognitive processes associated with hierarchical cognition should
include (1) comparing hierarchical and nonhierarchical models and (2) testing generative abil-
ities beyond simple recognition tasks (Dedhe, Clatterbuck, Piantadosi, & Cantlon, 2023). Due
to their perceptual nature, the visual and auditory domains do not easily lend themselves to
a generative task beyond discrimination. Here, we can overcome this limitation with a motor
recursion paradigm.

Based on the background above, this study aims: (1) to test whether human adults can
acquire recursive rules in the motor domain from practicing examples without feedback; (2) to
investigate their post-learning ability to discriminate between motor sequences that follow or
violate the recursive rule; and (3) to assess whether participants can use the acquired recursive
rule productively to generate motor sequences.

We hypothesize that humans can acquire the ability to generate motor sequences using
recursion without prior explanation of the rules or trial feedback, similar to language, vision,
and music findings. We employ a motor recursion task and compare it with an iteration task,
both previously used in an functional magnetic resonnance imaging (fMRI) procedure where
participants had been previously instructed and heavily trained on the rules (Martins et al.,
2019). We predict that the recursion learning curves will be steeper than iteration, reflecting
the cognitive demands of understanding and generating recursive structures. Additionally, we
anticipate that acquiring iteration before recursion will facilitate the learning process. Lastly,
we expect performance to improve on the second day of testing following a sleep period,
capitalizing on the role of sleep in consolidating motoric representations.
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2. Methods

2.1. Participants

We tested 40 healthy participants, including 17 males and 23 females, aged 18-38
(M = 29). All participants were nonmusicians, had normal or corrected-to-normal vision
and audition, were right-handed, and had no neurological or psychiatric disease history. All
participants provided written informed consent according to the local ethics committee guide-
lines. This work was approved under the ethics committee project number 016-15-26012015
at the Max Planck Institute for Human Cognitive and Brain Sciences.

2.2. Tasks and stimuli

Participants saw sequences of keypresses on a schematic keyboard on a computer screen.
They were asked to repeat or complete these sequences on a 16-key MIDI piano keyboard (see
Fig. 1 caption for video examples). The keyboard did not produce sound, but contained visual
and tactile markers on specific keys (3, 5, 7, 10, 12, and 14) for spatial reference. Participants
were instructed to produce the correct keypress sequences with the correct fingers and follow
the correct temporal structure (see details in Fig. 1). The temporal structure of the sequences
was given by an auditory metronome sounding at 60 bpm (4 beats per second).

2.3. Trial structure

The typical trial was composed of three steps (I, II, and III), and the relation between
steps was determined by one of two rules: iteration or recursion (Fig. 1b,c). Participants were
asked to press the keyboard buttons following the sequences they saw on the screen as they
were presented (i.e., simultaneously). These sequences were visually depicted by overlaying
colored circles onto the keys of a virtual keyboard. Different colors denoted the fingers par-
ticipants used to press the keys (red/thumb, green/index, and blue/middle finger). Crucially,
both physical and virtual keyboards were silent, generating no auditory tones.

The application of different rules always generated a final motor sequence of the kind [[K
— 25, K—1s,K], [K -5, K, K+ 5], [K, K+ s, K 4 25]]. To increase stimulus variability, we
introduced the free parameters s and ky. Parameter s could be a value within the set {—2, —1,
1, 2}. If s was positive (1 or 2), the sequences were ascending, meaning that they unfolded
from left to right on the keyboard (e.g., [K—1, K, K+1]). If s was negative (—1 or —2), the
sequence was descending, meaning that sequences unfolded from right to left on the keyboard
(e.g., [K+1, K, K—1]). When s = 1 or —1, the sequence (within each cluster) was formed
by adjacent keys ([K+1, K, K—1]), and when s = 2 and —2, the sequence was formed by
nonadjacent keys, meaning that there was a space of one key between a pair of elements
within the cluster (e.g., [K—2, K, K+42]). The initial key ky could be one of the middle four
keys of the keyboard {7, 8, 9, 10}. Overall, these variations produced 16 different sequences
balanced across conditions. Crucially, participants had to extract these free parameters during
steps I and II to correctly generate the sequence in step II1.
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Fig. 1. Task principles. Participants were asked to generate sequences of keypresses on a keyboard with the thumb,
index, and middle finger (denoted by red, green, and blue, respectively). Keypress order is denoted here as num-
bers, which were not shown to the participants. Sequences were formed in three steps (I, II, and III), which
followed one of two rules: Iteration and Recursion. Participants executed the motor sequence displayed on the
screen during steps I and II. In step III, they were asked to generate the final sequence without visual support. (a)
Temporal structure in step III: In step III, both rules resulted in the same complete sequence of nine keypresses,
here [[K—2, K—1, K], [K—1, K, K+1], [K, K+1, K+2]]. K is the key in the spatial center of the pattern. The
sequence lasted 12 s and was aligned with a metronome with four beats per second (one strong and three weak).
Keypresses started at the onset of the strong beat and were released at the offset of the third weak beat; thus,
each keypress had the duration (d) = .75 s followed by a short pause of .25 s. Hierarchical clustering within the
sequence (three clusters of three items) was marked by a 1-s break after each cluster, as well as by the finger
pattern (red, green, and blue). (b) Iterative rule: Step I was composed of three keypresses executed with the thumb
(red) on the first (strong) beat of each cluster [[K—2, _, _ ], [K—1, _, _1, [K, _, _], each withd = .75 s. In step I,
a second keypress with the index was added to each chunk: [[K—2, K—1, _ ], [K—1, K, _ ], [K, K+1, _]]. Thus,
the iterative rule added elements within the same hierarchical level without generating new levels. Step III was
simply the serial completion of the pattern with the middle finger [[K—2, K—1, K], [K—1, K, K+1], [K, K+1,
K+-2]]. Importantly, all sequences (in steps I, II, and III) had a total duration of 12 s. Here, __ denotes a period of
four beats equivalent to (but without) a keypress. The horizontal arrow denotes that, in this example, within-level
keypresses are added in ascending order from left to right. See https://osf.io/gbd8j for video trial examples of both
ascending and descending order. (c) Recursive rule: Step I was a single keypress with the index finger (green) on
key K. In the figure example, step II was a sequence of three keypresses [K—1, K, K+1] executed with the thumb
(red), index (green), and middle finger (blue). Step III was a sequence of nine keypresses sequence [[K—2, K—1,
K], [K—1, K, K+1], [K, K+1, K+2]]. As denoted by the vertical arrows, the underlying recursive rule was the
substitution of each keypress K,, with a sequence of three keypresses [K,; — n, Ky, Kyy1 + n]. In general, the
recursive transformation rule was K, —[K, 11 — s, K41, K11 + s]. K is the reference key pressed in step I, and
s = {—2, —1, 1, 2} denotes the distance and direction of keypresses relative to the reference K. In the example
above, s = 1; thus, the sequence is composed of adjacent keypresses executed from left to right (see the text for
details). In addition to the key, the recursion also operated in the dimension of rhythm to facilitate the represen-
tation that each cluster of three keypresses (and rhythmic breaks) was “nested” within a higher-level keypress of
equal total duration (see Fig. 1A for rhythmic structure). In step I, the keypress duration d; = 12 s. In step 1I, each
keypress had a duration d, = 3 s followed by a 1 s break. In step III, each keypress had the duration d3 = .75 s
followed by a break of .25 s within cluster, and a break of 1 s between clusters. Thus, the general temporal rule of
key presses and within-level breaks was d, ;= d, /4. See https://osf.i0/6q5jm for video trial examples.
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2.4. Procedure

Broadly, tasks, stimuli, and trial structure were similar to those used in Martins et al. (2019).
However, in this prior study, participants were explicitly given the task rules, shown illustra-
tive examples, and trained with verbal feedback and corrections by the experimenter between
sessions within a single day. In the current experiment, participants first executed correct
examples without prior explanation of the rule or trial feedback. Then, rule acquisition was
tested by (1) discrimination of correct/incorrect step III sequences and (2) uncued motor gen-
eration of the sequence in step III.

In this experiment, participants were tested on 2 separate days. During each testing day,
they performed two tasks (recursion and iteration), each with a duration of 1 h and each
composed of three phases: Training, Discrimination, and Generation. In the training phase,
participants were asked to execute sequences of finger movements by following visual cues
displayed on the screen and in sync with the metronome from step I to step IIL. In the dis-
crimination phase, they were again instructed to press the buttons along with the visual cues
synchronized with the beats from steps I to III, and afterward, they were asked to evaluate
whether step Il sequences were correct or incorrect. Finally, in the generation phase, they
followed steps I and II synchronized with the metronome and visual cues, and then were
asked to generate the correct step III without the support of visual cues.

The generation phase was the crucial test to evaluate whether participants had acquired
the ability to use recursive and iterative rules to generate motor sequences. The training and
discrimination phases allowed us to map further whether a potential inability to do so was
due to (1) motor learning impairment (failure in training), (2) rule representation impairment
(discrimination phase), or (3) active generativity impairment (generation phase). Importantly,
during the training phase, participants were only exposed to sequences with adjacent key-
presses, meaning with s = {—1, 1} (e.g., https://osf.io/ekb7n; https://osf.io/awuqr). In the
other two phases, however, they were asked to go beyond the training sample and discrim-
inate/generate sequences also containing nonadjacent keypresses, that is, s = {—2, 2} (e.g.,
https://osf.io/fs8nr; https://osf.io/dqrvn).

Participants were randomly divided into two groups of 20 each. The first group started
with iteration followed by recursion (I-R), and the second started with recursion followed by
iteration (R-I). Each group followed the same order on both days of testing.

2.4.1. Training phase

Video depictions of Training trials can be found for Iteration (https://osf.io/gbd8j) and
Recursion (https://osf.io/6q5jm). Participants were asked to press the correct keys with
the correct fingers, as demonstrated on the screen, synchronized both with the visual cues
(colored circles) and with the metronome beats. Crucially, keypresses did not generate
auditory tones. The training phase comprised 16 trials, in which there was always visual
assistance in producing steps I, II, and III. Participants were instructed to understand the rules
underlying the sequences’ formation. They were told there was only one general rule for all
sequences during the recursive task and only one rule for all sequences during the iterative
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Fig. 2. Foil categories. (a) Correct step III. (b) In the positional foil trials, step III was correct relative to the
position of the keys but incorrect relative to the keypress direction. Step II could unfold from left to right at the
between-cluster level—[[ _, K—1, _], [ _, K, _], [ _, K+1, _]]—but the third step would unfold from right to
left at the within-cluster level—[[ K, K—1, K-2], [K+1, K, K—1], [K+2, K+1, K]]. This foil was introduced
to check whether participants were sensitive to the coherence of directionality between local and global levels,
a hallmark of the “multiple-level” recursive representations. (c) In the odd foil trials, the third keypress of each
cluster was a repetition of the first. Crucially, [[K—2, K—1, K-2], [K—1, K, K—1], [K, K+1, K]] could be a
plausible continuation of [[K—2, K—1, _], [K—1, K, _], [K, K41, _]], but it violated the underlying iterative rule.
Due to these foil specificities, we expected participants to perform worse in the positional foils in the recursive
trials and worse in the odd foils in the iteration trials.

task. Crucially, participants were not told about the concepts of recursion and iteration, nor
were these terms presented during testing.

The first goal of this phase was to train participants in executing the motor sequences.
The second goal was to expose them to the underlying generative rules without explicit rule
instructions or trial feedback and test whether motor performance (keypress accuracy and
synchrony with the metronome) improved with time. We tested whether accuracy and syn-
chrony improved across trials and between day 2 and day 1. We also tested whether these
measures differed between tasks (recursion vs. iteration) and task-order conditions (R-I vs.
I-R).

2.4.2. Discrimination phase

Video depictions of Discrimination trials are available for Iteration (https://osf.io/83nwq)
and Recursion (https://osf.io/2gd4k). The procedure was similar to the training phase, except
that step III could either be a correct continuation of step II by applying the recursive or iter-
ative rule or be a violation (foil). There were two foil categories: odd and positional (Fig. 2).
While both were wrong, odd foils were a more plausible continuation of step II in iteration,
and position foils were a more plausible continuation of step II in recursion. In the case of
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odd foils, step III started with the same sequence of keys (within each cluster) pressed in
step II in the iteration. Correct discrimination required the understanding that cluster com-
pletion should follow the same within-cluster direction as step II. In the case of positional
foils, step III followed the same between-cluster direction as step II in the recursive condi-
tion. In contrast, the within-cluster direction was incoherent with that of the between-cluster.
Thus, correct discrimination required an understanding of between- and within-cluster level
coherence and, consequently, of the hierarchical relationship between levels.

Overall, there were 32 discrimination trials. Step III was well-formed in 16 trials; in the
remaining 16, step III was a violation (eight odd and eight positional foils). Similar to the
training phase, participants were instructed to execute the sequence presented on the screen
and synch with the metronome. At the end of the trial, they were asked to determine whether
step III was a correct continuation of step II, according to the previously trained rules (itera-
tion or recursion). After step III, the screen presented the question: “Was the last step of the
sequence correct or incorrect?”. Participants answered by pressing one of two keys on the
keyboard.

The goal of the discrimination phase was to test whether participants formed a sufficient
understanding of the underlying rules after the training phase, which would allow them to
classify foils versus well-formed structures above chance. We also tested for differences in
discrimination accuracy between days (1 vs. 2), tasks (recursion vs. iteration), and task order
(I-R vs. R-D).

2.4.3. Generation phase

Video depictions of Generation trials are available for Iteration (https://osf.io/7w5ps) and
Recursion (https://osf.io/qgh93n). The procedure was similar to the training phase, except that
in this phase, performance on step III was not guided by visual cues. Thus, after steps I
and II, participants had to generate step III using the correct rule (recursion or iteration)
and remaining in synch with the metronome (Fig. 1a). In step III, the screen depicted an
empty keyboard, and participants were given a 1-s visual warning cue before the metronome
started. There was a total of 16 generation trials. This phase evaluated whether participants
could use the underlying rules to generate well-formed structures. We also tested for accuracy
differences between days (1 vs. 2) tasks (recursion vs. iteration), and task orders (I-R vs. R-I).

2.5. Analyses

2.5.1. Training, discrimination, and generation

All analyses were performed in Rstudio (R 1.79). Model details can be found in the Supple-
mentary Materials. Code and datasets are available in the OSF repository https://osf.io/dbvrn.
For the training and generation phases, we coded each keypress as “correct” if the correct key
was pressed within a window of [—.25; 1] seconds relative to the metronome beat. Otherwise,
the keypress was coded as “incorrect.” We also measured the temporal latency between the
metronome beat and the keypress for the generation phase. For the discrimination phase, we
recorded whether participants correctly discriminated between correct versus incorrect trials.
For all analyses, only step III data were included.
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We compared keypress accuracy between days (1 vs. 2), tasks (recursion vs. iteration),
and task orders (I-R vs. R-I) by running generalized linear mixed models using the function
glmer() from the package /me4 (Bates, Michler, Bolker, & Walker, 2015). The dependent
variables were the correctness of each keypress (correct vs. incorrect) for the training and
generation phases and the correctness of each discrimination trial (correct vs. incorrect) for
the discrimination phase. We used a logit link function (binomial family) for both analy-
ses. Because there were nine keypresses per trial (16 trials), there were 144 data points per
participant for training and generation. In the discrimination phase, there were only 32 data
points per subject (one per trial). We also included the variable “trial” (1—16) in the training
phase models to quantify the motor learning slopes across trials. Since this was not the focus
of the other phases, and there was a ceiling effect toward the end of the training, the vari-
able “trial” was omitted from the discrimination and generation models. The discrimination
models included the variable foil type (correct, odd, and positional) to ensure that participants
could reject different foils correctly.

The full models for training, discrimination, and generation were, respectively:

Accuracy = (Task x Day x Order x Trial) + (1 + Task + Day + Trial|Participant)
Accuracy = (Task x Day x Order x Foil) + (1 + Task + Day + Foil|Participant)
Accuracy = (Task x Day x Order) + (1 + Task + Day|Participant)

We ran the full models up to the highest possible interactions for all analyses, then per-
formed model selection with the function dropl() from the package stats (R Core Team,
2023). In all cases, the best fit was the model without the highest-order interaction (see results
and Supplementary Materials). To analyze the significant effects, we computed pairwise com-
parisons of means and slopes using the package emmeans() (Russell, 2018). All pairwise
comparisons were Bonferroni corrected.

We also measured the proportion of trials for which participants correctly pressed 9/9 keys.
Considering four free parameter s combinations {—2, —1, 1, 2} (ascending vs. descend-
ing; adjacent vs. nonadjacent keys), the probability that participants applied the correct
one was 25%. With 16 trials, participants who correctly pressed 9/9 keys in eight trials
performed statistically above chance (Binomial test with a probability of 25%: z = 2.02,
p =.03).

2.5.2. Beat-keypress latency

We performed exploratory analyses on the beat-keypress latency differences across the nine
keypresses composing the generation trials. Previous research suggests a higher latency of
keypresses at the beginning of each cluster in motor sequences, indicating the retrieval process
of a hierarchical motor schema from long-term memory (Moss, Zhang, & Mayr, 2023). To
replicate this analysis (Moss et al., 2023), we tested the effects of “chunk transition,” that is,
the time latency difference between the 1st key of each cluster versus the other keys within the
cluster (2nd or 3rd). To do so, we encoded the first key of each cluster as a dummy category
“Ist” and the other keys as a second category “2nd | 3rd.” We then ran a generalized linear
mixed model testing for the time latency difference between these two categories (“1st” vs.
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“2nd | 3rd”) and its interaction with task differences (recursion vs. iteration). Similar to Moss
et al. (2023), our model included task random slopes and participant random intercepts. In
other words, we ran the model:

Beat - keypress latency = (Task x Key[1stvs.”2nd|3rd"]) + (1 + Task|Participant)

2.5.3. Post-experiment questionnaire

Participants filled in a post-task questionnaire to gauge their cognitive and motor strategies.
This 16-item questionnaire included 7-choice Likert scale questions about their ability to: (1)
correctly hear the metronome; (2) remember the rule in step III; (3) understand the rule in
steps I and II; (4) press the correct keys; (5) using the correct fingers; (6) following the correct
rhythm; (7) rely on step I as a reference; (8) relying on step II as a reference; (9) imagining
the fingers touching the keyboard before step III; (10) imagining colored dots moving in the
keyboard before step III; (11) imagining their fingers moving on the keyboard immediately
before step III; (12) preparing motorically for the sequence immediately before step III; (13)
preparing visually for the sequence immediately before step III; (14) preparing spatially for
the sequence immediately before step III; (15) using an intuitive strategy; and (16) thinking
explicitly about the rule. At the end of each day (1 and 2), participants filled out the same
questionnaire for each task (recursion and iteration).

Raw data is shown in Fig. S1. We first performed an exploratory factor analysis using
Oblimin rotation and Principal Axis Extraction to test for participants’ general cognitive and
motor strategies. The number of factors was determined by parallel analysis, which was per-
formed in Jamovi (The Jamovi Project, 2021). The questions clustered along three main fac-
tors (Barlett’s test of Sphericity: ¢2 (105) = 990, p < .001, Overall KMO = .76, see Table
S1).

The first factor included Questions 2—6 and 8, which related to using task rules in sequence
generation. Factor 2 included Questions 9-12 and 14, which related to sensorimotor and
visuospatial imagery. Factor 3 included items related to the use of explicit versus intuitive
strategies, such as positive loadings of Questions 7, 13, and 16 and negative loadings of
Question 15.

We then tested (1) the correlation between keypress accuracy and factor scores and (2)
whether the strategies varied across tasks, days, and task orders:

Factor score = Day x Task x Order + (1|Participant)

3. Results

3.1. Training phase

Training results are summarized in Table 1 and Fig. 3.

The best model fit for accuracy during training (Table S2) revealed significant interac-
tions of TaskxDayxOrder (OR = 2.55, 95% CI [1.76, 3.69], p < .001), TaskxDay x Trial
(OR = 0.93, 95% CI [0.89, 0.96], p < .001), and TaskxOrderxTrial (OR = 1.16, 95% CI
[1.12, 1.20], p < .001). Full pairwise contrasts are depicted in Tables S3 and S4.
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Table 1
Summary statistics

Day 1 Day 2
Iteration Recursion Iteration Recursion

Training Order RI 90+£30 76443 94+24 90£29
% Correct (M+SD) Order IR 79+40 78+42 90431 86434
Discrimination Order RI 76443 71445 85136 86135
% Correct (M+SD) Order IR 68147 83437 84436 87433
Generation Order RI 63+48 26+44 72445 48450
% Correct (M£SD) Order IR 58+49 53+50 69+46 70+46
Generation Order RI 5/20 2/20 8/20 6/20
(Ps above chance) Order IR 7/20 7/20 10/20 11/20

Note. Means (M) and Standard Deviations (SD) of the % of keys pressed correctly per trial during Training and
Generation and the % of correct Discrimination trials. The bottom panel depicts the number of participants (Ps)
with above-chance performance in the generation phase, defined as >50% trials with all keypresses correct (9/9).

Regarding the effects of Task x Day x Order (Table S3), we found that participants generally
improved their performance from day 1 to day 2 regardless of task or order (I-R iteration:
z=—7.122, p < .0001; I-R recursion: z = —5.226, p < .0001; R-I iteration: z = —4.276,
p < .0001; R-I recursion: z = —8.200, p < .0001). Moreover, accuracy was higher in iteration
versus recursion on both days for the R-I order (day 1: z =7.428, p < .0001; day 2: z = 3.834,
p =.0001), but only on day 2 for the order I-R (z = 2.608, p = .0091). Task order R-I versus
I-R increased accuracy for iteration on day 1 (z = —3.639, p = .0003) but did neither impact
day 2 nor recursion (ps > .05).

Regarding the effect of TaskxDay xTrial (Table S4), we found that learning slopes were
steeper in recursion versus iteration on day 1 (z = —4.0, p < .0001) but notonday 2 (z = 1.7,
p =.1). This effect was caused by an initial lower accuracy for recursion on day 1. Following
the effect of Task x Order x Trial, we found that learning slopes were steeper for the task with
which participants initiated the procedure: iteration versus recursion in the I-R order (z = 4.8,
p < .0001) and in recursion versus iteration in the R-I order (z = —5.7, p < .0001).

3.2. Discrimination phase

Discrimination results are summarized in Table 1 and Fig. 4.

The best model fit for discrimination accuracy (Table S5) revealed significant interactions
of TaskxDayxOrder (OR = 4.3, 95% CI [1.97, 9.29], p < .001), TaskxOrderxFoil odd
(OR = 0.16, 95% CI [0.06, 0.45], p < .001), and Day x Order x Foil positional (OR = 6.58,
95% CI [2.58, 16.80], p < .001). Full pairwise contrasts are depicted in Table S6.

Regarding the effects of Task x Day x Order, we found that participants were better in dis-
criminating correct sequences (vs. foils) on day 2 (vs. day 1), regardless of task or order
(I-R iteration: z = —6.34, p < .0001; I-R recursion: z = —2.88, p = .0003; R-I iteration:
z=—3.69, p =.0002; R-I recursion: z = —4.83, p < .0001). Participants were also more accu-
rate on recursion versus iteration (in both days) when the order was I-R (day 1: z = —5.88,
p < .0001; day 2: z = —2.36, p = .02) but not when the order was R-I (ps > .4). Finally,
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Fig. 3. Training phase: mean keypress accuracy across trials. The goal of the training phase was to expose par-
ticipants (all nonmusicians) to the process of generating motor fractals and to measure their ability to execute
the sequences of nine keypresses motorically. Participants were asked to execute sequences in three consecutive
steps based on visual cues and to try to extract the underlying generative rule. Participants performed iterative (I)
and recursive (R) tasks on 2 days. Half of the participants (n = 20) started the procedure with iteration (order I-R;
upper row), and half (n = 20) with recursion (order R-I; lower row). The training tasks were composed of 16 trials.
Shaded areas around regression lines denote confidence intervals; dots represent participants’ averaged keypress
accuracy in step III. Globally, keypress accuracy was high, indicating adequate motor performance, especially on
the second day. Accuracy was particularly low, and learning rates were steeper for recursion versus iteration on
the first day, especially when the procedure started with recursion.

participants were more accurate in a certain task within day 1, when they performed that task

in the second position of the procedure (order R-I vs. I-R for iteration z = —2.12, p = .03;
order I-R vs. R-I for recursion: z = 2.67, p = .008). These differences were not significant on
day 2 (ps > .1).

Notably, while participants were only trained with sequences containing adjacent key-
presses (i.e., with s = {—1, 1} in the transformation rule K, — [K,4+1 — 5, Koy 1, Koy1 + s1),
they were equally able to discriminate well-formed sequences with nonadjacent keypresses
(s = {—2,2}) from day 1 (Fig. S3).
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Fig. 4. Discrimination phase: discrimination accuracy of correct sequences and foils (step III). The discrimination
phase aimed to evaluate whether participants could correctly extract the underlying generative rule and use it to
discriminate between well-formed sequences and violations. Participants performed 32 discrimination trials. Six-
teen consisted of correct sequences (green) and 16 incorrect sequences, which could consist of odd foils (yellow,
n = 8) or positional foils (pink, n = 8). The red dashed horizontal line depicts the global accuracy above which
performance accuracy was statistically above chance (22 out of 32 trials, Binomial test: z = 1.94, p = .03). Black
horizontal bars depict mean accuracy. Colored horizontal bars depict the median for each trial type (correct, odd,
positional). Generally: (1) participants could discriminate between correct and incorrect trials across all conditions
and days; (2) this capacity improved on the second day; (3) some participants struggled in rejecting positional Foils
on the first day, especially in the task they started with, indicating that the expectation of hierarchical self-similarity
might not yet been formed; and (4) most participants could correctly classify all trial types on the second day.

Regarding the Foil effects, we found that some participants struggled with rejecting posi-
tional foils, especially on day 1 and in the task with which they started the procedure (Fig. 4,
left). Importantly, most participants performed above chance in all foil categories on day 2
(Fig. 4, right).

3.3. Generation phase

Generation results are summarized in Table 1 and Fig. 5. Individual-level dynamics across
days are shown in Fig. S4.
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Fig. 5. Generation phase: keypress accuracy. The goal of the generation phase was to evaluate whether participants
could use the rules acquired during the training and discrimination phases to extend motor sequences beyond
the given hierarchical level. After being shown steps I and II, they were asked to generate step III following
a metronome without visual support. Top row: mean % correct keypresses per participant. Each dot represents
individual means, and black horizontal bars depict median accuracy. Bottom row: Number of trials (out of 16)
in which participants pressed all nine keys correctly. The probability of using the correct parameter combination
given in step II (out of 4: ascending vs. descending; adjacent vs. nonadjacent keys) is 25%, corresponding to
4 out of 16 trials (red dashed line); a proportion of 50% correct trials is significantly above chance (red dotted
line). Broadly, participants improved significantly from day 1 to day 2, and this effect was more pronounced
for recursion. Performance in recursion significantly improved by starting the procedure with iteration. Most
participants of the order I-R could use recursive rules productively to generate new hierarchical levels, although
many struggled.

The best model fit for accuracy during generation (Table S7 revealed significant interactions
between Taskx Day (OR = 2.16,95% CI [1.86, 2.51], p < .001) and Task x Order (OR = 0.13,
95% CI1[0.06, 0.32], p < .001). Full pairwise contrasts are depicted in Table S8.

Regarding the effects of Task x Day, we found that participants were more accurate in iter-
ation versus recursion on both days (Day 1: z = 6.10, p < .0001; Day 2: z = 2.68, p = .0074)
and more accurate on day 2 versus day 1 on both tasks (iteration: z = —3.29, p = .001;
recursion: z = —6.81, p < .0001).
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Regarding the effects of TaskxOrder, we found that participants were less accurate in
recursion (vs. iteration) when they started the procedure with recursion (order R-1: z = 6.35,
p < .0001). However, when the task order was reversed, there was no difference between
tasks (order I-R: z = —0.06, p = .9). Similarly, participants were more accurate in the order
I-R versus R-I for recursion (z = 2.89, p = .004) but not iteration (z = —0.40, p = .68).

Notably, while participants were only trained with sequences containing adjacent key-
presses (i.e., with s = {—1, 1} in the transformation rule K, — [Ky4+; — s, Kyo1, Korp +
s]), they were equally able to generate well-formed sequences with nonadjacent keypresses
(s = {—2,2}) from day 1 (Fig. S5).

Interestingly, keypress accuracy in the generation phase was correlated only moderately
with discrimination (r(38) = .32, p = .05) and keypress accuracy in the training phase
(r(38) = .38, p = .01) (all on the second day).

We also measured the proportion of trials for which participants correctly pressed 9/9 keys
(Fig. 5, bottom row). Considering four parameter combinations {—2, —1, 1, 2} (ascending
vs. descending; adjacent vs. nonadjacent keys), the probability that participants applied the
correct one was 25%. However, this estimate is extremely conservative as the probability of
executing a correct sequence of nine keypresses given a 16 key-keyboard is exceedingly low.
With 16 trials, participants who correctly pressed 9/9 keys in eight trials performed statisti-
cally above chance (Binomial test with a probability of 25%: z = 2.02, p = .03). The propor-
tion of participants who had more than eight correct trials on the second day was 10/20 for
iteration and 11/20 for recursion in the order I-R, and 8/20 for iteration and 6/20 for recursion
in the order R-I.

3.4. Beat-keypress latency

In addition to general keypress accuracy, we measured beat-keypress latencies in the gen-
eration phase and analyzed the patterns across the nine keypresses (Fig. 6). Unsurprisingly,
latency was highest in the first key of the sequence. Following Moss et al. (2023), we
computed a chunk transition measure corresponding to the latency difference between each
cluster’s “1st” key versus the other keys “2nd | 3rd.” We found an interaction between Chunk
Transition x Task (OR = 0.97, 95% CI [0.96, 0.98], p < .001). On average, the first key of
each cluster had the highest latency for iteration (z = —5.27, p < .0001) but not for recursion
(z=1.51, p = .13). And the latencies for the “2nd | 3rd” keys were higher in recursion versus
iteration (z = 6.04, p < .0001), while the task differences were not significant for the 1st key
(z=1.56,p = .12).

3.5. Post-experiment questionnaire analysis

Our factor analysis suggests that the post-experiment questions cluster along three factors
(Table S1). Factor 1 included items related to fask rules in the sequence generation. Factor
2 included items related to sensorimotor and visuospatial imagery. Factor 3 included items
related to the use of explicit versus intuitive strategies.

In general, we found that keypress accuracy in the generation phase correlated with the
scores in Factor 1 (r = .349, p < .001) and Factor 2 (» = .211, p = .008) but not Factor 3
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Fig. 6. Generation phase: beat-keypress latency. Keypresses were valid if occurring within a window of [—.25; 1]
seconds relative to the metronome beat. Negative latency values represent keypresses preceding the metronome.
Here, we depict only the latency data from correct keypresses in step III (including both days and task orders).
Left: Latencies across the nine keypresses (three keypresses per cluster—1st, 2nd, 3rd). Error bars represent the
standard error. Right: 1st and 2nd | 3rd keypress latencies averaged across clusters (Chunk transition analysis).
Previous research suggests that latency is higher in the first item of a cluster relative to the others due to the
initiation of a motor schema (Moss et al., 2023). Here, this pattern is found (on average) for iteration but not for
recursion. Latencies are higher for recursion than iteration for “2nd | 3rd” keys, which indicates greater cognitive
effort in completing each cluster. Each data point is the average keypress latency per participant for the 1st, 2nd,
and 3rd keys (40 data points per keypress). Black horizontal bars depict median values.

(r=.108, p = .180), suggesting that adequate performance relied on both the understanding
and use of task rules and sensorimotor and visuospatial imagery. We also found that Factor 1
scores were higher on day 2 versus day 1 (b = 0.8, 95% CI [0.62, 1.02], p< .001), and for
iteration versus recursion when the task order was R-1 (b = —0.53,[—0.92, —0.14], p = .009).
This suggests task rules were less clear on day 1 and for recursion in the order R-I1. We did
not find significant task, day, and order effects for Factors 2 and 3 (Tables S9-S11).

We also explored the data on individual questions (Figs. S1 and S2). Participants reported
using explicit rule representation strategies (M = 5.16 on a 1-7 Likert scale) more often than
intuitive strategies (M = 3.7). However, neither strategy significantly correlated with recursive
generation accuracy (explicit: » = .17, p = .13; intuitive: r = —.04, p = .87). Importantly,
recursion generation accuracy was significantly correlated with motor (r = .22, p = .05) and
spatial (r = .34, p = .002) imagery before step III, while visual preparation (r = .00, p = .98)
and imagining the sequence of colored dots on the keyboard (r = .09, p = .44) were not. This
suggests that visual imagery played a less significant role than motor-spatial imagery.

4. Discussion

We have shown for the first time that humans can (1) acquire recursive rules in the motor
domain from practicing examples without trial feedback or prior rule explanation; (2) use
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these rules to discriminate between well-formed hierarchical sequences versus violations;
and (3) generate new hierarchical levels consistent with the previously given. Furthermore,
with our novel design and procedure, we revealed interesting learning patterns as follows: (1)
participants were more accurate on the second day of testing in all phases; (2) the ability to
use recursion was greatly enhanced by the prior acquisition of iteration, mimicking findings
from other domains; and (3) a strong ability to discriminate well-formed recursive structures
was not sufficient for above-chance novel sequence generativity. Finally, using recursive rules
was associated with higher effort in cluster completion relative to iteration. We now discuss
these findings in detail.

First, more than one test session was needed for participants to generate new hierarchical
levels following the recursive rule, while participants successfully utilized the iterative rule
already on day 1. Broadly, participants performed better in both rules on the second day in
all phases, that is, training, discrimination, and generation. These results align with previ-
ous work suggesting that abstract representations of motor sequences are facilitated by sleep
consolidation (Fischer et al., 2005; Fogel et al., 2017). However, our experiment was not
designed to test for the causal role of sleep. As we did not explicitly test for sleep as a factor
in acquiring hierarchical levels in motor sequences, the increase in performance may also be
due to the effect of a prior session. Post-experiment questionnaires showed, for example, that
the understanding and utilization of task rules increased on the second day and correlated
with keypress accuracy in the generation phase. In particular, on the second day, participants
reported (1) that it was easier to extract the trial-relevant information from step II to apply the
rule in step 111, and (2) that they were more confident to have used the correct fingers, pressed
the correct keys, and followed the correct rhythm. Notably, most participants seemed to think
about the rules explicitly rather than use intuitive strategies.

Second, we found a significant effect of the task order. Prior experience with iteration ben-
efits the acquisition of recursion. Interestingly, this effect was already visible during training
while identical motor sequences were copied. However, it was particularly pronounced in the
generation phase and crucially asymmetric between recursion and iteration. For instance, on
day 2, task order significantly impacted the accuracy of recursion (I-R: 70% vs. R-I: 48%)
but not iteration (I-R: 69% vs. R-I: 72%). Out of 20 participants, 11 could use recursion to
generate the correct sequences in most trials on the second day when starting the procedure
with iteration and then recursion. In the converse order, only 6/20 did so. The effects were
even more significant on the first day, in which 7/20 participants could perform when the task
order was iteration-recursion, while only 2/20 did so in the converse order. This (asymmet-
rical) enhancing effect of iteration on recursion replicates our findings in the visual domain
(Martins et al., 2014). It is also consistent with the literature on language acquisition, showing
that learning “same-level” conjunctive constructions (e.g., the [second] and [red] ball) paves
the way to the acquisition of recursive rules adding information across “multiple-levels” (e.g.,
the [[second] red] ball) (Matthei, 1982; Roeper, 2011; Yang et al., 2022). The overall propor-
tion of participants with a majority of correct trials in our learning task without explicit rule
instructions or feedback was similar to previous findings with the same tasks after 1 h of
training with explicit rule explanation and verbal feedback (Martins et al., 2019).
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Third, we found evidence that high-performing motor execution in training and above-
chance discrimination of well-formed structures were not sufficient to ensure the capacity
to generate new hierarchical levels beyond the given. In particular, while the ability to
discriminate well-formed recursive structures in the task order R-I was above chance on days
1 and 2 (mean accuracies 71% and 85%, respectively), generation accuracy was poor (26%
and 48%). Consequently, the correlation between discrimination and generation performance
was only weak (r(38) = .32, p = .05). These findings underscore recent evidence (Dedhe
et al., 2023) that discrimination tasks are insufficient to determine whether participants can
represent recursion. For instance, associative learning might suffice to parse long-distance
dependencies in AGL paradigms (Lakretz & Dehaene, 2021; Rey, Perruchet, & Fagot,
2012; Rey & Fagot, 2023). Moreover, discrimination could have been solved by a heuristic
representation that did not involve the recursive rule. For example, rejecting the positional
foil (intended to test recursive rule understanding) required the understanding of coherence
between hierarchical levels, or in other words, the coherence between and within keypress
clusters. This coherence is a prerequisite for recursive hierarchical embedding. However,
without analyzing participants’ error behaviors across a wide variety of foils, it is difficult
to exclude the possibility that they may have used different heuristics. Conversely, the
generation task cannot be solved without extracting the trial-specific free parameters k (initial
key) and s (transformation) to assess where the sequence starts, its directionality, and whether
it generates sequences of adjacent or nonadjacent keys (the latter of which were not included
in the training). In addition to these abstract, free parameters, participants must be able
to execute the sequence within the correct rhythmic structure. In other words, generation
reduces participants’ likelihood of relying on simple heuristics to solve the task. Importantly,
the ability to motorically execute the sequences during training does not guarantee adequate
performance during generation, as the latter requires the retrieval of the appropriate sequence.
While training performance was relatively high for most participants, many struggled in the
generation phase. Furthermore, the correlation between training and generation was .38.

Finally, beat-keypress latency patterns revealed higher cognitive effort in generating motor
sequences when applying recursive rules. Interestingly, latencies were identical for iteration
and recursion in the first key of each cluster, while they were higher for recursion in the
second and third keys. Following Moss et al. (2023), this suggests that cluster completion
(but not initiation) was more challenging with recursion, perhaps because the latter required
adding two keypresses per cluster instead of one. The requirement of adding more elements
to the sequence is likely to increase the working memory load (Kessler & Oberauer, 2014).
These results are also consistent with previous neuroimaging findings that recursion is more
demanding to the motor control system than iteration (Martins et al., 2019).

4.1. Theoretical and empirical contributions

Our work is the first demonstration that human adults can acquire and use recursive rules to
generate fractal structures in the motor domain. We have also demonstrated similar recursive
abilities in the visual and musical domains (Martins et al., 2016, 2017), including in children
and stroke patients (Martins et al., 2014; Martins et al., 2019). Overall, our results support the
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claim that recursion is available in several cognitive domains beyond language, thus falsifying
the hypothesis that recursion is language-domain-specific (Hauser et al., 2002).

This is also the first demonstration, beyond language, that humans can acquire recursion
in the sensorimotor domain from practicing examples without prior rule explanation or trial
feedback. In our work with vision and music, we tested for the ability to discriminate between
correct and incorrect stimuli perceptually. As shown here and discussed above (also here,
Dedhe et al., 2023), discrimination per se might be insufficient evidence for a robust gener-
ative capacity. Previous research has shown that humans and nonhuman animals (birds and
primates) can touch images in the correct sequence on a touchscreen following an underlying
hierarchical structure (Ferrigno et al., 2020; Liao et al., 2022). However, in these experiments,
the underlying hierarchy was cued visually (using brackets of different shapes and colors), and
feedback was provided. In our learning setup, participants learned and generalized by copy-
ing examples without feedback, which is more naturalistic and prevents associative learning
(Lakretz & Dehaene, 2021; Rey & Fagot, 2023). Furthermore, participants were only trained
with well-formed examples of motor sequences that included adjacent keypresses (s = {—1,
1}). However, already on the first day, they were equally accurate in discriminating and gen-
erating sequences with nonadjacent keypresses (s = {—2, 2}), demonstrating that they could
generalize beyond the training set.

Importantly, neuroimaging research suggests that hierarchical cognition in language is
supported by neural systems different from those of the motor domain (Friederici, 2023; Zac-
carella, Papitto, & Friederici, 2021). Thus, motor recursion is likely independent of language,
in line with the idea that distinct biological systems can implement similar computations
(Asano et al., 2021; Dehaene et al., 2022; Fedorenko & Shain, 2021; Martins et al., 2014;
Martins, Mursic¢, Oh, & Fitch, 2015; Martins et al., 2019; Martins et al., 2020).

It is important to note that the mechanisms involved in acquiring recursive rules are poorly
understood, and it is unclear whether these require domain-general or domain-specific cogni-
tive and neural systems. This topic is discussed extensively elsewhere (Martins, 2017, 2024;
Martins et al., 2015; Martins & Fitch, 2014). One hypothesis is that while domain-specialized
cognitive and neural systems are involved in applying recursive rules when these are well-
trained (Martins et al., 2019; Martins et al., 2020; Martins et al., 2014), the acquisition of
recursive rules might show cognitive and neural similarities between music, action, vision,
and language (Martins et al., 2017; Martins et al., 2019). Under this framework, participants
may use domain-general cognition to extract a recursive rule that they then instantiate motor-
ically. Importantly, this general cognition does not seem to activate the classic fronto-parietal
brain networks associated with cognitive effort and intelligence (Fischmeister et al., 2017;
Martins et al., 2019).

In the current task, participants’ performance correlated with increased confidence in press-
ing the correct keys, using the correct fingers, and following the correct rhythm. Moreover,
most participants reported preparing motorically, imagining finger movements, and touching
the keys. We also know that when participants train extensively with the task, recursion in the
motor domain activates classic motor imagery areas, including basal ganglia, cerebellum, and
sensorimotor and premotor regions (Martins et al., 2019). However, with the current behav-
ioral setup, it is impossible to determine whether motor domain-specific systems are involved
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in acquiring the rule or whether the motor domain interfaces with a domain-general recursive
system. Future neuroimaging studies focusing on acquiring motor recursion will be essential
to disambiguate these hypotheses.

Finally, our results offer design suggestions for future experiments. First, we found a gap
between discrimination and generation performance, supporting the idea that generation is a
more robust test of the underlying representations (Dedhe et al., 2023). Second, more than
1 day may be necessary to consolidate recursive rules from sensorimotor sequences (Fischer
et al., 2005; Fogel et al., 2017), especially if feedback is not provided. Third, since the knowl-
edge of recursion scaffolds on iteration, fair tests of recursion in clinical and nonhuman sam-
ples should start the procedure with iteration, as a failure to pass the task might not represent
an inability to develop the knowledge of recursion, but rather the lack of relevant prior knowl-
edge with (simpler) iterative rules (Martins et al., 2014; Roeper, 2011; Yang et al., 2022).
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