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A B S T R A C T

Even though memory plays a pervasive role in perception, the nature of the memory traces left by past sounds is 
still largely mysterious. Here, we probed the memory for natural auditory textures. For such stochastic sounds, 
two types of representations have been put forward: a representation based on sets of temporally local features, 
or a representation based on time-averaged summary statistics. We synthesized naturalistic texture exemplars 
and used them in an implicit memory paradigm based on repetition, previously shown to induce rapid learning 
for artificial sounds such as white noise. Results were similar for artificial and natural sounds, exhibiting a 
general trend for a decrease in repetition detection performance with increasing exemplar duration, although 
with some variation depending on texture type. This trend could be captured by a summary statistics model, but 
also by a new model based on the random sampling of temporally local features. Moreover, repeated exposure to 
a same natural texture or artificial noise exemplar systematically induced a performance gain, which was 
comparable across all sound types and exemplar durations. Thus, natural texture exemplars were amenable to 
learning when repeated exposure was available. The findings are consistent with two interpretations: the exis
tence of a special processing mode when acoustic repetition is involved, to which natural textures are not im
mune, or a convergence of the local features versus summary statistics descriptions if a continuum of time scales 
is considered for auditory representations.

1. Introduction

1.1. Context and motivation

Auditory perception must combine the acoustic information reach
ing the ears at every moment in time with information from the past, 
stored in memory. This is obviously the case when rapidly recognizing 
sounds that have acquired meaning through exposure, such as for 
instance one’s own ringtone (Roye, Schröger, Jacobsen, & Gruber, 
2010). More generally, a pervasive role of memory in perception is at the 
core of theories based on Bayesian inference or predictive coding, as 
both approaches assume that a model of the world has been somehow 
internalized through experience (Heilbron & Chait, 2018; Kok, Mostert, 
& de Lange, 2017; Press, Kok, & Yon, 2020). The nature of the memory 

traces left by past sounds, however, is still largely mysterious. Here, we 
probe the memory for natural auditory textures. For such stochastic 
sounds, two types of representations can be hypothesized: a represen
tation based on temporally local features (Agus, Thorpe, & Pressnitzer, 
2010) and a representation based on time-averaged summary statistics 
(McDermott, Schemitsch, & Simoncelli, 2013).

The temporally local features hypothesis stems from a line of 
research that characterized the perception of repeated sounds. When 
hearing a repeated exemplar of white noise, listeners report the emer
gence of individual events, often described as “rasping” or “clanks” 
(Guttman & Julesz, 1963; Warren, Bashford, Cooley, & Brubaker, 2001). 
Subsequent experiments have confirmed that the features used to detect 
repetition in white noise generally seem to have a local time-frequency 
extent (Kaernbach, 1993; Ringer, Schröger, & Grimm, 2023). Recently, 
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the findings have been extended to longer-term memory traces. When 
listeners were exposed to the same exemplar of noise which reoccurred 
several times during an experimental block, behavioral evidence of a 
“memory for noise” lasting up to several weeks was observed (Agus 
et al., 2010; Viswanathan, Rémy, Bacon-Macé, & Thorpe, 2016). As the 
duration of the learnt noise exemplars extended to the multi-second 
range, it seemed unreasonable that listeners memorized the thousands 
of samples defining one particular noise exemplar. Rather, as was the 
case for the immediate repetition of noise, it was hypothesized that 
listeners stored a limited set of temporally local features, which could be 
used as a compact “watermark” for a given noise exemplar (Agus et al., 
2010). Neural correlates of the phenomenon were consistent with the 
local features hypothesis, with the added proposal that feature sets could 
be idiosyncratic and thus unique to each listener/noise combination 
(Andrillon, Kouider, Agus, & Pressnitzer, 2015; Luo, Tian, Song, Zhou, & 
Poeppel, 2013; Ringer et al., 2023). Finally, similar findings were ob
tained with stochastic artificial sounds other than white noise, such as 
random melodies (Bianco et al., 2020; Bianco, Hall, Pearce, & Chait, 
2023), random rhythms (Kang, Agus, & Pressnitzer, 2017), or tone 
clouds with a broad range of spectro-temporal complexities (Agus & 
Pressnitzer, 2021). Rapid plasticity was even evidenced with repeated 
exposure to noise exemplars during sleep (Andrillon, Pressnitzer, Léger, 
& Kouider, 2017). Overall, repetition seems to automatically trigger the 
rapid formation of memory traces for many kinds of sounds.

The summary statistics hypothesis stems from work on natural 
auditory textures (McDermott et al., 2013; McDermott & Simoncelli, 
2011). Textures can be defined as sounds with stochastic but stationary 
characteristics. A natural texture is the sound emanating from an un
derlying stationary generative process in the environment, such as the 
sound of fire crackling, water flowing, or wind blowing. The first 
important finding of this line of research was that synthetic sounds 
matched to natural sounds in a few long-term statistics were readily 
identified as natural textures by listeners (Geffen, Gervain, Werker, & 
Magnasco, 2011; McDermott & Simoncelli, 2011). This showed that 
summary statistics were sufficient to recognize texture categories. 
Perhaps even more intriguingly, when asked to discriminate between 
two exemplars of the same texture (e.g., two instances of fire crackling), 
listeners’ performances decreased as the exemplar durations increased. 
This seems counter-intuitive, as for many other tasks, longer durations 
usually result in improved discrimination performance (Teng, Tian, & 
Poeppel, 2016). However, such a finding could be understood if the 
discrimination was based on time-averaged summary statistics, and not 
on temporally local features that could be accrued as duration increased. 
To quote McDermott et al. (2013, abstract): “These results indicate that 
once these sounds are of moderate length, the brain’s representation is limited 
to time-averaged statistics, which, for different examples of the same texture, 
converge to the same values with increasing duration”. Summary statistics 
for textures could be the auditory equivalent of “ensemble coding” for 
visual perception, which is an efficient way to capture the gist of natural 
images (Whitney & Leib, 2016).

Taken to an extreme, a consequence of the summary statistics hy
pothesis would be that different exemplars of the same natural texture 
cannot be memorized once they reach a moderate length, simply 
because they cannot be discriminated any more. Therefore, unlike for 
artificial sounds, repeated exposure to a natural texture exemplar may 
not induce a memory trace specific to that exemplar. Such a radical 
hypothesis is overly simplistic, however. In the original McDermott et al. 
(2013) study, texture exemplar discrimination did not fall to chance 
even at the longest duration tested. The authors thus left open the pos
sibility that summary statistics may coexist with other types of repre
sentations. In their comment to the original study, Nelken and de 
Cheveigné (2013) strikingly summarized such a position by referring to 
“a skeleton of events on a bed of textures”. Their point was that not every 
sound should be treated as a texture and thus summarized by statistics. 
For events, such as a bird call, local features would be preserved, leading 
to a dual representation of a sound scene. However, it is yet unknown if 

and how “events” may arise from natural textures themselves.
Another important point made by the texture literature is that the use 

of natural sounds could be critical to recruit ecologically relevant 
auditory processes. Such processes and their attending representations 
would not be called into action for artificial sounds (Theunissen & Elie, 
2014). For instance, the auditory system may enter a “texture mode” 
when it recognizes a natural texture, and actively discard any tempo
rally local features in favor of a more compact summary statistics rep
resentation (Nelken & de Cheveigné, 2013). Indeed, it makes much more 
sense to be able to recognize the physical cause of a texture (McDermott 
et al., 2013; McDermott & Simoncelli, 2011; Nelken & de Cheveigné, 
2013) or even some of its characteristics, such as temperature for 
flowing water (Velasco, Jones, King, & Spence, 2013), than to recall the 
acoustic details of a given texture exemplar. Auditory cognition may 
thus be tuned to efficient representations of natural sounds and their 
statistical properties (Gervain & Geffen, 2019) in order to facilitate the 
categorization of the physical events making up our environment (Traer, 
Norman-Haignere, & McDermott, 2021).

The sounds that have been used in the memory for noise paradigm, 
such as white noise or tone clouds, can be seen as artificial textures. 
However, natural textures have not been used yet in such a paradigm. 
Here, we synthesized naturalistic sound textures using the original 
McDermott and Simoncelli (2011) and used them in the repetition-based 
“memory for noise” paradigm of Agus et al. (2010), alongside one 
condition using white noise for comparison.

1.2. Previous results and specific predictions

The memory for noise paradigm introduced by Agus et al. (2010)
required participants to discriminate between trials containing fully 
random noise and trials made of abutting repetitions of the same noise 
exemplar. This repetition-detection task is possible for a range of 
exemplar durations, from tens of milliseconds to several seconds 
(Guttman & Julesz, 1963; Kaernbach, 2004; Warren et al., 2001). When 
a single repetition is presented, performance decreases as exemplar 
duration increases, reaching chance for exemplar durations of about 6 s 
(Kaernbach, 2004, their Fig. 2). Agus et al. (2010) introduced an addi
tional experimental condition: some noise exemplars re-occurred over 
many trials in their experiments. Perhaps surprisingly, a constant 
“memory gain” was observed for re-occurring exemplars, irrespective of 
duration for exemplars up to 2 s long (the longest duration tested in Agus 
et al., 2010, their Fig. 4B). This was interpreted as signaling a memory 
trace based on a few, temporally local features at all durations.

From the now abundant literature about natural textures, the most 
relevant results for the present study are that of Experiment 2 of 
McDermott et al., (2013, their Fig. 2b). They introduced a texture 
exemplar discrimination task, where participants heard three different 
sounds in each trial. All three sounds were from the same natural texture 
category (e.g. Fire). Two of them were acoustically identical, whereas 
the third one was a different exemplar from the same texture category. 
Participants had to indicate the odd one out. Exemplar durations ranged 
from 40 ms to 2500 ms. Performance decreased with duration, from 
about 90 % correct at 40 ms down to about 75 % correct at 2500 ms (the 
longest duration they tested). This was interpreted by the convergence 
of summary statistics towards their expected value for the texture 
category as exemplar duration increased.

From both sets of results, a decrease in performance with duration is 
therefore expected for a repetition-detection task, for natural textures 
and noise. For repetition-detection with re-occurring exemplars, a con
stant memory gain is expected for artificial noise. For natural textures, 
there are two possible predictions. Either the representation of repeated 
natural textures includes temporally local features, and then they should 
display constant memory gain for all durations just like noise. Or, 
because of a specific “texture mode” that actively discards temporally 
local features, their representation is exclusively based on summary 
statistics. As longer-term memory for summary statistics has not yet 
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been investigated, the memory gain in this case is essentially unknown.

2. Methods

2.1. General procedure

All experiments were performed online, as data collection took place 
during the pandemic. The method was otherwise identical to the orig
inal “memory for noise” study (Agus et al., 2010). Briefly, in such a 
paradigm, each trial consists of a single sound: either noise (N), or 
repeated noise (RN), that is, noise for which the first half is identical to 
the second half. The repetition is seamless, with no acoustic cue nor 
silent interruption between halves. The participant’s task is to report 
whether the trial contained a repetition or not. For some trials, the RN is 
randomly drawn anew, so participants only hear each RN stimulus once. 
Such a condition taps into short-term memory processes and provides a 
baseline repetition-detection performance, which may depend on 
various stimulus parameters such as duration (Kaernbach, 2004; Warren 
et al., 2001). However, without informing the participants, a third 
condition is introduced: one RN exemplar, called the reference RN 
(RefRN), re-occurs over different trials throughout an experimental 
block. An improved performance for RefRN trials compared to RN trials 
is interpreted as learning of the RefRN exemplar.

The stochastic stimuli used here were white noise, replicating pre
vious studies, but we also introduced natural textures. Three texture 
categories were chosen: fire crackling (Fire), water running down a 
stream (Stream), and wind blowing (Wind). Texture trials (Tx) were all 
different and generated as in McDermott and Simoncelli (2011). 
Repeated textures (RTx) and reference repeated texture (RefRTx) trials 
were obtained by cross-fading two copies of a same texture exemplar. 
Illustrations of the stimuli are shown in Fig. 1. As can be seen, even 
though the choice of texture was largely arbitrary, they all differed in 
their spectro-temporal characteristics, which in turn differed from white 
noise.

Different trial durations were tested on different experimental 
blocks: 250 ms, 500 ms, 1000 ms, 2000 ms, and 4000 ms. This corre
sponded to exemplar durations of 125 ms, 250 ms, 500 ms, 1000 ms, and 

2000 ms, respectively, matching exactly Agus et al. (2010) for noise and 
approximately McDermott et al. (2013) for natural textures.

2.2. Participants

72 individuals (13 female, 59 male), aged between 18 and 38 (M =
29.7 SD = 1.66), with self-reported normal hearing participated in the 
online experiment in return for monetary compensation. This corre
sponded to 18 participants per texture, similar to the number of par
ticipants in previous comparable in-lab studies. The sample size was 
preregistered (see below). Participants were recruited through Prolific 
(Oxford, UK). Before the experiment, all participants provided informed 
consent. At the end of the experiment, an online debriefing text was 
presented. The UCL Research Ethics Committee approved the protocol 
(#1490/009).

2.3. Stimuli

Because generating naturalistic textures can be computationally 
intensive, they were synthesized offline and stored as sound files, which 
were loaded to the participant’s browser during the experiment. The 
synthesis algorithm was the one from McDermott and Simoncelli (2011)
as available online (http://mcdermottlab.mit.edu/downloads.html). In 
total, 9 sound files with a different random seed, each 392 s long, were 
synthesized for each of the three categories of natural sound textures 
(Fire, Stream, Wind). For symmetry, 9 sound files, also 392 s long, were 
generated for white noise. Each of the 36 unique sound files (9 random 
seeds x 4 sound types) was used twice, but always for different partici
pants. To generate a trial, short exemplars of the desired duration were 
cut sequentially (no overlap between exemplars) from the 392 s-long 
sounds. For repeated trials (RN/RTx and RefRN/RefRTx), the same 
exemplar was collated twice, with a 10-ms crossfade. For non-repeated 
trials (N/Tx), two different exemplars were collated, with the same 
crossfade technique. All sounds were presented as uncompressed .wav 
files.

2.4. Procedure

The experiment was conducted using the Gorilla platform (Cam
bridge, UK). Before starting the experiment, several checks were run to 
ensure data quality, including browser checks and headphone checks 
(Milne et al., 2021). Individuals who failed any of these checks were 
rejected from participating, so all participants are assumed to have been 
wearing headphones. Participants were then presented with an infor
mation sheet and gave their informed consent.

Each participant completed five experimental blocks, each of which 
corresponded to a different exemplar duration, all for the same sound 
type. Each participant was thus only tested on one sound type (e.g. 
White noise or Fire). Each block was preceded by a brief familiarization 
phase with feedback. The participant first heard a sound with 10 repe
titions of a given exemplar, to illustrate the cues to repetition at the 
duration of the block. This familiarization sound could be played up to 
three times. Then, four training trials were provided. In the training 
trials, the stimulus either consisted of an exemplar repeated 10 times or 
of 10 different exemplars. Participants were instructed to report whether 
they heard a repetition. Immediate feedback was given. Further training 
trials followed, with gradually increasing difficulty. Those training trials 
contained 4 repetitions (10 trials), 3 repetitions (12 trials), and finally 2 
repetitions as in the main experiment (20 trials). Training trials were 
always 50 % RN/RTx and 50 % N/Tx (no RefRN/RefRTx). The training 
session was immediately followed by the experimental block at the same 
duration. In the experimental block, participants did not receive im
mediate feedback but did see their cumulative accuracy (percent cor
rect) at the end of each block. Each block consisted of 40 N/Tx trials, 20 
RN/RTx trials, and 20 RefRN/RefRTx trials, with those conditions pre
sented in a pseudorandom order (Ref stimuli were never presented on 

Fig. 1. Acoustic characteristics of white noise and natural textures. Illustrative 
examples of cochleagrams for the four different sound categories. The time- 
frequency cochleagrams use brighter colors to represent energy within simu
lated auditory filters (see Methods). In all cases, repeated trials are shown, so 
the first 500-ms are identical to the last 500-ms. Note that there is no acoustic 
discontinuity at the repetition onset. The temporal waveforms (top inset of each 
panel) and spectral average (right inset of each panel) are also provided.
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successive trials).
Participants were incentivized through bonus payments that would 

be calculated based on their overall accuracy at the end of the experi
ment (Bianco, Mills, de Kerangal, Rosen, & Chait, 2021). Finally, par
ticipants were also informed that their data would be rejected if they 
scored less than 60 % accuracy on the task to discourage participants 
from guessing at random.

2.5. Statistical analyses

We used the d’ sensitivity index of signal detection theory to estimate 
performance. Hits were defined as “repeated” responses for RN/RTx and 
RefRN/RefRTx trials. False alarms were defined as “repeated” responses 
for N/Tx trials. When the proportion of hits or false alarms reached 0 or 
1 for a given participant and measurement, a correction corresponding 
to plus or minus half-a-trial was applied (Macmillan & Creelman, 2004).

Analyses of variance (ANOVAs) and t-tests were used as inferential 
tests, with an α-level of 0.05. Reporting convention follows the APA 
guidelines, 7th edition, so all p-values less than 0.001 are reported as p 
< 0.001. The main analysis was a mixed-design ANOVA, fully reported 
in Table A1. Because the false alarm rate was shared between RN/RTx 
and RefRN/RefRTx condition, which could have introduced correlations 
across measurements, the ANOVAs and the paired t-tests contrasting 
conditions were performed on the z-transformed hit rates used to 
compute d’ (Agus & Pressnitzer, 2021). We further checked that per
forming the same analyses on d’, corresponding to z-transformed hit 
rates minus z-transformed false alarms, led to strictly identical conclu
sions. A Greenhouse-Geisser correction was applied when Mauchly’s test 
indicated a violation of the sphericity assumption (p < 0.05). Further 
partial ANOVAs and t-tests were run to help interpret the main analysis, 
as it included several factors and revealed second- and third-order in
teractions. The partial ANOVAs used repeated-measures or mixed- 
design ANOVAs as appropriate. When performing partial analyses 
where all natural textures were considered together, and because 
different participants ran different texture blocks, a “participant” was 
defined as the average of individual results in the three natural texture 
blocks, in order of enrolment. All ANOVAs were run using JASP 
(JASPTeam, 2024). Effect sizes are reported as generalized η2, notated 
η2

G, as recommended for mixed designs (Lakens, 2013, p. 6).

2.6. Preregistration and data availability

The study was preregistered (ResearchBox #2762). There were 
minor deviations to the preregistration: the noise sound category was 
added for comparison; the hit-rate over time analyses were omitted due 
to the large number of conditions; the ANOVAs were run on z(hits) and 
not d’ as justified above; partial ANOVAs were added to interpret the 
outcome of the full analysis. The main characteristics of the design 
(sample size, exclusion criteria, duration conditions, test procedure, 
main analyses) exactly followed the preregistration. The full dataset is 
available online (ResearchBox #2762).

2.7. Summary statistics model

Summary statistics were computed for the exact stimulus set that was 
presented to participants. The model of McDermott et al. (2013) was 
used, downloaded from the author’s website and using the default pa
rameters corresponding to the published study. To avoid repetition ar
tifacts, only the first half of our stimuli was fed to the model. The 
variance of statistics was estimated across exemplars, as in McDermott 
et al. (2013). In our case, for each texture type and duration, we had 540 
available exemplars (40 N trials, 20 RN trials, from 9 different batches). 
We arbitrarily grouped the exemplars in groups of 10, computed the 
statistics’ variance for each group of 10, and derived the median and 
interquartile range of the statistics’ variance across the 54 groups.

2.8. Local feature sampling

A novel feature sampling simulation was also introduced. Its 
implementation is described alongside the simulation description in 
Section 6. The simulation code is available online (ResearchBox #2762).

2.9. Acoustic analyses

To obtain the illustrations of the stimuli provided in Fig. 1., stimuli 
were passed into an auditory model as described in Agus, Suied, Thorpe, 
and Pressnitzer (2012). The model consisted of a broadband pre- 
emphasis bandpass filter (0.4–8.5 kHz), a gammatone auditory filter
bank, half-wave rectification, square root compression, and lowpass 
filtering at 100 Hz. Such a time-frequency representation, termed a 
“cochleagram”, is intended to roughly mimic the information available 
after peripheral auditory processing.

3. Results

3.1. Validation of the online testing procedure

So far, all studies using variants of the memory for noise paradigm 
but two (Dauer, Henry, & Herrmann, 2022; Ringer, Schröger, & Grimm, 
2022) were performed under highly controlled laboratory conditions. It 
was thus unclear whether the findings, presumably dependent on subtle 
acoustic cues, would be robust enough to translate to online testing.

Fig. 2A shows the average results for the 0.5-s duration, for white 
noise, as this is the duration condition that was most extensively tested 
in previous investigations. Performance is expressed as the sensitivity 
index d’ of signal detection theory. Baseline performance for the within- 
trial repetition detection task RN, for which the repeated noise exemplar 
was novel on each trial, was modest but still above chance (M = 0.67; t- 
test against the chance value of d’ = 0: t(17) = 5.54, p < 0.001). 
Importantly, in the RefRN condition for which the same noise exemplar 
re-occurred throughout a block, performance improved (M = 2.06; 
paired t-test against RN performance t(17) = 5.40, p < 0.001). This 
pattern of results replicates in-lab findings using white noise (Agus et al., 
2010; Agus & Pressnitzer, 2013), validating the online procedure.

Fig. 2B shows the first set of results for natural textures, again for the 
0.5-s duration, with performance averaged for all three texture cate
gories. For these relatively short-duration natural texture exemplars, 
performance was generally higher than for noise. In the baseline RTx 
condition, performance was well above chance (M = 2.07; t-test against 
the chance value of 0: t(17) = 13.67, p < 0.001). In the RefRTx condi
tion, performance further improved (M = 2.74; paired t-test against RTx 

Fig. 2. Performance for 500-ms long exemplars. A). White noise. Repetition 
detection performance is shown, expressed as the d’ sensitivity index of signal 
detection theory. For the Repeated Noise condition (RN), the noise exemplar 
was novel in each trial. For the Reference Repeated Noise condition (RefRN), 
the same noise exemplar re-occurred on 20 trials randomly interspersed in the 
experiment. Dots represent individual participants, connected by thin lines 
across conditions. Mean performance and standard error about the mean are 
shown as thick lines. B). Natural textures. Performance averaged for the three 
natural textures. Same as A).
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performance t(17) = 5.64, p < 0.001). This shows that within-trial 
repetition detection and across-trial learning are possible with rela
tively short texture exemplars.

3.2. Repetition detection and rapid learning for short and long texture 
durations

Behavioral performance was measured for repeated (RN/RTx) 
stimuli and for repeated and re-occurring stimuli (RefRN/RefTx). 
Repetition detection was expected to decrease with duration and a 
memory gain was hypothesized for re-occurring stimuli, at least for 
noise. Fig. 3 shows the results for noise and textures as a function of 
exemplar duration (trial duration itself was twice as long). For noise, 
there was a steady decrease in performance in the RN condition from 
short to long durations, but, importantly, the memory gain observed for 
RefRN was approximately constant across the whole range of durations. 
For textures, performance in the RTx condition was always good 
(average d’ above 1), but, contrary to the expectation, had a band-pass 
shape with a peak at 250 ms. Importantly again, a memory gain for 
RefTx was observed throughout the whole range of durations, a novel 
finding.

These observations were formally tested by two separate repeated- 
measures ANOVAs, one for noise and one for textures, with factors 
“Condition” (2 levels, RN and RefRN for noise or RTx and RefRTx for 
textures) and “Duration” (5 levels, [125, 250, 500, 1000, 2000] ms). For 
noise, significant effects of Condition (F(1,17) = 44.81, p < 0.001, η2

G =

0.32) and Duration (F(4,68) = 11.14, p < 0.001, η2
G = 0.18) were 

observed, without any interaction between the two factors (F(4,68) =
1.42, p = 0.24, η2

G = 0.03). Similar findings were obtained with textures, 
with significant effects of Condition (F(1,17) = 470.4, p < 0.001, η2

G =

0.47) and Duration (F(2.53,46.0.6) = 14.28, p < 0.001, η2
G = 0.23). For 

textures, there was a significant interaction between Condition and 
Duration, with a small effect size (F(3.28,55.68) = 5.00, p = 0.003, η2

G =

0.09). Overall, the ANOVAs confirmed that, while duration affected 
performance, the advantage provided by repeated exposure to a same 
exemplar was at least as large for longer durations compared to shorter 
durations, for both noise (RefRN vs RN) and textures (RefTx vs RTx).

Finally, for textures, post hoc tests were run to compare each data 
point with all others, using a conservative Bonferroni correction (45 
comparisons). We only report the crucial tests for the novel texture 
condition, namely, the possible memory gain for RefTx over RTx, 
reflecting learning of individual texture exemplars. At all tested dura
tions, including the longest ones, a significant effect of RefTx was 
observed over RTx (all Bonferroni-corrected p < 0.001, except for 125 
ms for which p = 0.003 and 250 ms for which p = 0.002).

3.3. Detailed effect of sound categories

To investigate in further detail whether the different texture cate
gories influenced performance, a mixed-design ANOVA was run with 
factors “Condition” (2 levels: RN/RTx and RefRN/RefRTx), “Duration” 
(5 levels: [125, 250, 500, 1000, 2000] ms), and “Sound category” (4 
levels: White noise, Fire, Stream, Wind). This main analysis is reported 
in full detail in the Appendix, Table A1. To summarize, all main effects 
were significant (p < 0.001). The two-way interactions Condition * 
Duration and Texture * Duration, as well as the three-way interaction 
Condition * Texture * Duration, were also significant (p = 0.003 or less), 
with relatively small effect sizes (η2

G = 0.05 or less).
To help interpret the effect of sound category in relation to our 

question of interest, the memory for natural textures, we transformed 
the data to directly estimate the amount of learning that was afforded by 
repeated exposure to a sound exemplar. To this effect, we computed the 
memory gain, defined as performance for the trials where the sound 
exemplar re-occurred throughout a block (RefRN/RefTx) minus per
formance where sound exemplars were novel on each trial (RN/RTx). 
The memory gain obtained for the different sound categories and du
rations is displayed in Fig. 4A. Even though the results were somewhat 
noisy, there was no trend for a smaller gain at longer texture durations, 
nor for a systematic advantage of white noise over natural textures.

A mixed-design ANOVA was performed on the memory gain with 
factors “Duration” (5 levels: [125, 250, 500, 1000, 2000] ms), and 
“Sound category” (4 levels: White noise, Fire, Stream, Wind). An effect 
of Duration was observed (F(4,272) = 5.04, p < 0.001, η2

G = 0.05), 
suggesting that the memory gain was, perhaps paradoxically, slightly 
larger for longer durations. However, due to the small effect size, we did 
not investigate the effect further with post hoc tests, and conservatively 
interpret this finding as a largely constant memory gain over all tested 
durations. Crucially, no effect of Sound category was found (F(3,68) =
2.21, p = 0.10, η2

G = 0.02). The Duration * Sound category was signifi
cant, with a medium effect size (F(12,272) = 2.57, p = 0.003, η2

G = 0.08). 
The interaction suggests that the small increase in memory gain with 
duration was mostly due to two natural textures, Fire and Stream.

Finally, we examined the baseline performance for individual sound 
categories in the repetition detection task, the conditions RN/RTx. The 
results are shown in Fig. 4B. Breaking-up the data into sound categories 
revealed that the peak at 250 ms observed in the mean texture data 
(Fig. 3B) was due to the Fire and Stream textures. The Wind texture 
instead displayed a peak at 1000 ms.

A mixed-design ANOVA was performed on the performance in the 
RN/RTx condition, with factors “Duration” (5 levels, [125, 250, 500, 
1000, 2000] ms), and “Sound category” (4 levels, White noise, Fire, 
Stream, Wind). As for the memory gain analysis, an effect of Duration 
was observed (F(4,272) = 24.14, p < 0.001, η2

G = 0.19). Unlike for the 
memory gain analysis, this time an effect of Sound category was 

Fig. 3. Effect of exemplar duration. A). White noise. Mean performance across participants is shown for the RN and RefRN conditions, as a function of exemplar 
duration. Error bars represent standard error about the mean. B). Natural textures. Performance averaged for the natural textures. Same as A.).
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observed, with a large effect size (F(3,68) = 17.68, p < 0.001, η2
G =

0.21). The Duration * Sound category was also significant (F(12,272) =
3.88, p < 0.001, η2

G = 0.10).
A post hoc comparison of all data points for Fig. 4B was performed 

(Duration * Sound category interaction). Briefly, likely because of large 
number of comparisons, the robustness of the pattern of performance 
seen in Fig. 4B could not be formally confirmed. In particular, the 
apparent peaks in performance at 250 ms for Fire and Stream and at 
1000 ms for Wind were not significantly different from their neighbors 
(Table A2). So, whereas there were significant differences across sound 
categories with large effect size, pinpointing them to specific durations 
and textures would require further experimental data.

In summary, these analyses show that the texture type can influence 
baseline repetition-detection performance, in terms of overall 

performance but also in terms of performance change with exemplar 
durations. For re-occurring exemplars, all sound categories exhibited a 
memory gain. Importantly, there was no clear advantage of noise, which 
produced the amount of memory gain expected from previous studies, 
over natural textures. Natural textures produced sizeable memory gains, 
even at the longest durations tested.

4. Signal model based on summary statistics

A major insight of the summary statistics approach is that, for sto
chastic sounds with an underlying stationary generative process, fea
tures derived from auditory models will converge to their expected 
mean as duration increases (McDermott et al., 2013; McDermott & 
Simoncelli, 2011). This convergence allows for a compact 

Fig. 4. Effect of sound categories. A). Learning was assessed by computing the sensitivity increase due to repeated exposure. A “Memory gain” was defined as 
performance for the trials where sound exemplars re-occurred across 20 trials (RefRN/RefTx) minus performance where sound exemplars were novel on each trial 
(RN/RTx) B). Performance for the within-trial repetition detection task (RN/RTx).

125
250

500
1000

2000

Env. mean

125
250

500
1000

2000

Env. variance

125
250

500
1000

2000

Env. skew

125
250

500
1000

2000

Env. correlation

125
250

500
1000

2000

Exemplar duration (ms)

St
an

da
rd

 d
ev

ia
tio

n 
of

 s
ta

tis
tic

(lo
g 

sc
al

e)

Mod. power

125
250

500
1000

2000

Mod. corr. 1

125
250

500
1000

2000

Mod. corr. 2

Fire
Stream
Wind
Noise

Fig. 5. Variance of summary statistics. The variance of seven summary statistics was evaluated over the full stimulus set used in our experiments. Median values are 
shown on a logarithmic scale, with error bars corresponding to the interquartile range (summary statistics and display format as in McDermott et al., 2013, Fig. 1c).

B. Bastug et al.                                                                                                                                                                                                                                  Cognition 268 (2026) 106350 

6 



representation of natural auditory textures. The corresponding reduc
tion in the variance of statistics has been proposed as the explanation for 
the otherwise counterintuitive finding that discrimination performance 
between two exemplars of the same texture type decreases with longer 
durations. Our repetition-detection task can be construed as a kind of 
exemplar discrimination task, so could the same model apply?

We computed the variance of summary statistics over all exemplars 
of our stimulus set, using the model of McDermott et al. (2013). Results 
are displayed in Fig. 5. The reduction in statistics’ variance with dura
tion was confirmed. The variability of our variance estimates was similar 
to previous reports. This confirms that our stimulus generation strategy 
was appropriate, even though we only matched the statistics of the 
synthesized stimuli to those of target natural textures over 392 s (see 
Methods) with no additional constraint for the shorter exemplars actu
ally used in the experiments.

A qualitative comparison of the variance patterns can be made with 
the results of our repetition-detection task (Fig. 4B). The summary sta
tistics model captured the most important trend of decreasing perfor
mance with duration, as expected. The model was also mostly successful 
in predicting the better performance observed for the Fire and Stream 
texture types at short durations, reflected by higher statistics’ variance. 
However, the model did not predict the more subtle differences observed 
across texture types. In particular, the non-monotonic pattern observed 
for some natural textures categories was not reflected in any summary 
statistics variance pattern. The ordering of texture types in terms of 
statistics variance was also dependent on the statistics being considered, 
and the convergence in performance for Fire, Stream and Wind at longer 
durations was not captured.

Overall, the core prediction of reduced statistics’ variance with 
longer exemplar duration was verified in our stimulus set. It is possible 
that changing model parameters could lead to a better fit with the finer 
details our data. However, the aim here was to document the results of 
the standard summary statistics model, so no such fit was attempted.

5. Simulation based on local features sampling

We now turn to a different idea: in addition to or instead of summary 
statistics, listeners may use a small set of temporally local features to 
perform the repetition-detection task. Such a hypothesis has been put 
forward many times to interpret otherwise puzzling aspects of 
repetition-detection for stochastic signals, such as the distinctive fea
tures subjectively heard in repeating noise (Guttman & Julesz, 1963; 
Warren et al., 2001), the ability to tap consistently to repeating noise 
(Kaernbach, 1993; Ringer et al., 2023), or the constant memory gain 
observed across sound durations (Agus et al., 2010; Agus & Pressnitzer, 
2021; Andrillon et al., 2015; Kang et al., 2017). Moreover, idiosyncratic 
patterns of performance suggest that not all listeners use the same fea
tures for a given stochastic signal (Agus et al., 2010; Andrillon et al., 
2015; Kaernbach, 1993). To the best of our knowledge, no attempt has 
been made to derive quantitative predictions from such a proposal.

We do so here by simulating the performance expected if listeners 
based their perceptual decisions on a small number of features randomly 
sampled from the sound. Such an idea is directly inspired by the classic 
“Stimulus Sampling Theory” (Estes, 1950). As an early attempt to 
mathematically derive quantitative behavioral characteristics of 
learning, the stimulus sampling theory has led to numerous variants, for 
both memory and perceptual tasks (see Kent, Guest, Adelman, & Lam
berts, 2014, for a review). More recently, stochastic sampling of discrete 
stimulus features has been put forward as a unifying framework for 
computational and neural models of visual working memory 
(Schneegans, Taylor, & Bays, 2020).

Our implementation was kept as minimal as possible, to highlight the 
generic consequences of stimulus sampling. A texture exemplar was 
abstractly represented as a list of discrete features: a list of integers 
randomly drawn from a dictionnary of size M, the first parameter of the 
simulations. The number of features representing an examplar was 

decided by the second parameter of the simulation, R, the number of 
features per second. Random sampling of the features list was imple
mented by Poisson thinning of the full list, as in Schneegans et al. 
(2020). Reporting a repetition was finally decided by checking for 
multiple appearances of the same feature in the sampled list.

Fig. 6A further illustrates how the simulation was applied to our 
repetition-detection task. First, for each texture examplar, a list was 
drawn of (R*duration) random integers, uniformly distributed between 
1 and M. To simulate repeated trials, a texture examplar A was drawn 
and the trial was constructed as the catenated list of features AA. For 
non-repeated trials, another texture examplar B was drawn and the trial 
was constructed as the catenated list of features AB. Random sampling of 
the full feature list was performed by Poisson thinning with rate λ and 
equal weight for each feature (Schneegans et al., 2020). The simulated 
decision was “Repeated” if there were repeated features in the sampled 
list.

The simulation’s formalism can be interpreted as follows. The size of 
the dictionary M and the feature rate R are characteristics of a texture 
type: some textures may display a broader variety of features than 
others, and features may (on average) be longer or shorter for different 
texture types. The sampling process is the core idea we wished to probe: 
not all features will be available for the perceptual decision, presumably 
because of constraints on memory processes, but also because stochastic 
stimuli such as noise or natural textures sound initially “featureless”. 
Note that our model does not simulate an online comparison of each and 
every incoming feature to features stored in memory. Instead, the 
sampling occurs on the full stimulus representation, in order to present 
only a subset of features to the perceptual decision process. Finally, the 
decision rule is a based on a simple criterion that counts the number of 
repeated features in the sampled feature list.

This minimal implementation was sufficient to predict decreasing 
performance with texture duration. Intuitively, hits happen in the 
simulation when the random sampling process picks up twice the same 
feature in the AA list. This is more likely if the AA list is short. False 
alarms happen when the same feature appears by chance in the AB list. 
This is more likely if the AB list is long when M is large enough. Thus, in 
general, hits will decrease and false alarm will increase with duration, 
predicting declining performance. However, the simulation parameters 
can modulate the qualitative prediction: if M is low, there are fewer 
different features to sample from for a given texture type, so both hits 
and false alarms should increase. If R is low, the feature list will be short 
compared to λ at short durations, again impacting hits and false alarms. 
We therefore turned to numerical simulations to further probe the 
simulations’ behavior.

Grid searches on the texture-dependent parameters M and R were 
performed to find the best fits to the repetition-detection results of 
Fig. 4B. For simplification, and after pilot simulations showed the 
robustness of the predictions for different choices, all parameters related 
to the sampling and decision process were kept fixed: a Poisson rate 
parameter of λ = 8 was used throughout, corresponding to an expected 
rate of 8 sampled features per stimulus. The criterion for deciding on a 
repeat was set at 1, meaning at least a single repeated feature after 
sampling was enough to report a repeat. Results of the best fits (mini
mization of quadratic error) are shown in Fig. B1. This figure confirms 
that decreasing performance can be predicted purely through sampling, 
without any temporal averaging operation.

To improve the fit to our data, and in particular to capture the non- 
monotonic trends observed for some texture types, we introduced a 
modification to the sampling process. The Poisson rate parameter λ was 
limited to the total number of features available in a stimulus, meaning 
that the expected number of sampled features was either 8 or the total 
number of stimulus features, whichever was smallest. The best fits are 
shown in Fig. 6B. The distribution of the goodness of fits over M and R 
are shown in Fig. 6C. With this modification, satisfactory fits were ob
tained for all texture types. For Noise, simulation performance smoothly 
decreased with duration, which is the default behavior of Fig. B1. 
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Perhaps as a result, good fits were obtained over a broad parameter 
range, with the best fit observed for M = 61 and R = 37. The non- 
monotonic pattern of performance for Fire and Stream was simulated 
thanks to a lower feature rate (R = 11 or 10) and a large number of 
features (M = 183 or 84). Finally, the relatively flat performance for 
Wind was obtained for a very low feature rate (R = 4) and a small 
number of possible features (M = 22). The numerical values of M and R 
at the best fit should not be taken too literally, though, as there were 
many parameter combinations that produced approximately equally 
good fits (Fig. 6C). Nevertheless, the regions where good fits were 
observed seemed to match intuition, as Fire and Stream sound sparser 
than Noise (lower R), but with more possible distinct features than Noise 
(higher M). Wind, which in our stimulus set covered the narrowest 

frequency band, was fitted with both low R and low M.

6. General discussion

Combining ideas and techniques from two different lines of research, 
we applied a memory for noise paradigm to natural auditory textures 
and artificial white noise. Exemplars from different texture types were 
used in a repetition detection task, with parametrically varied exemplar 
duration. Results were similar for natural and artificial sounds: repeti
tion detection performance was accurate for short durations and poorer 
for long duration, even though a non-monotonic pattern of results was 
observed for natural textures. An increase in performance for exemplars 
that re-occurred throughout an experimental block was observed in all 

Fig. 6. Local features sampling. A. Each texture exemplar is represented by a list of features, random numbers from 1 to M. The parameter M represents the number 
of different features available for a given texture type. The number of features per exemplar depends on a second parameter, R, the rate of features per second. Here, 
two exemplars, A and B, are shown, with parameters [M = 100; R = 10] and duration = 1 s. Trials for the experiments are lists of features, constructed from texture 
exemplars. In repeated trials, the same exemplar is repeated (AA). In non-repeated trials, two different exemplars are collated (AB). To reach a perceptual decision, 
features are randomly sampled from the trial’s list of features. If a same feature appears more than once in the sampled features, then a “Repeated” answer is 
provided. From this strategy, all possible experimental outcomes can be simulated. B. For each texture type, the d’ values simulated (solid lines) are compared to the 
behavioral results (dashed lines, reproduced from Fig. 4B). The panel title indicates the parameters of the simulation. C. Distribution of goodness of fits (shown as -log 
(err2)) over the parameter space investigated in the grid search.
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cases, which we interpreted as a memory gain. The memory gain was at 
least as large for long durations than for short durations. Computational 
modeling showed that two a priori distinct representations, summary 
statistics and local feature sampling, could be used to predict the general 
decrease in performance with duration in the repetition detection task. 
After briefly comparing the behavioral results to the literature, the data 
and models will be discussed in the light of the long-standing issue of 
auditory representation for perception and memory.

6.1. Texture repetition-detection and texture exemplar discrimination

The results for noise replicate previous findings in repetition- 
detection tasks in a laboratory setting. Agus et al. (2010) observed a 
mean performance ranging from about d’ = 1.5 to about d’ = 0.5 for 
exemplar durations from 125 ms to 2000 ms. This is similar, or perhaps 
even slightly poorer, than what was observed here in an online setting 
(Fig. 3A, RN). Moreover, re-occurring exemplars exhibited a memory 
gain of about 1 d’-unit in both sets of findings (Fig. 3A, RefRN). This 
further validates the use of online testing with “memory for noise” 
paradigms (Dauer et al., 2022; Ringer et al., 2022).

The present results for natural textures may also be compared to the 
texture discrimination task of McDermott et al. (2013, Experiment 2). 
We used the exact same texture generation algorithm and tested 
exemplar durations over a similar range. A difference between the two 
studies is that, in the texture exemplar discrimination task, all exemplars 
within a trial were surrounded by silent gaps (McDermott et al., 2013). 
Here, in contrast, within-trial repetitions were seamless. Nevertheless, 
there was also a direct repetition in the texture examplar discrimination 
task (the odd-one-out was either the first or the last sound of a trial) and 
the exact value of the silent gaps made no difference to performance. 
Considering that noise learning can occur even with non-contiguous 
repetition (Andrillon et al., 2015; Bianco et al., 2020; Kaernbach, 
2004; Ringer et al., 2023), a direct comparison between our findings for 
natural textures and the texture discrimination task of McDermott et al. 
(2013) seems warranted.

We interpolated the percentage correct values provided in Fig. 2b of 
McDermott et al. to the durations tested here, and converted the results 
to d’. This led to interpolated performance of d’ = [1.9, 1.5, 1.1, 0.9, 0.7] 
for durations of [125, 250, 500, 1000, 2000] ms. This is broadly 
consistent with what was observed in the present repetition-detection 
task (Fig. 3B, RTx). The additional finding of the present study con
cerns natural texture exemplars that re-occurred over 20 trials (Fig. 3B, 
RefRTx). In this case, increased exposure led to improved performance 
for all tested durations.

6.2. Summary statistics model and local feature sampling simulation

Both the summary statistics model and the feature sampling simu
lation predicted the main trend of the behavioral results: a general 
decrease in performance as exemplar duration increased. Summary 
statistics predicted this trend by a reduced variance of statistics as 
duration increased. Feature sampling predicted this trend by the prob
abilistic effect of selecting a fixed number of local features from 
increasingly long sets of possible features as duration increased. That 
these two independent frameworks led to similar predictions is a novel 
insight, suggesting that either one, or both, could be at play for 
repetition-detection and exemplar discrimination with natural textures.

Outright, it is important to stress that a quantitative comparison of 
the two approaches is unwarranted on the basis of the present results 
only. The summary statistics model is a complete signal processing 
pipeline, with parameters that were not adjusted to our dataset. Also, we 
made no attempt to convert the model’s output (variance of a set of 
statistics) to a single d’ measure. In contrast, the feature sampling 
simulation was purely conceptual. By design, it provided a d’ output so 
its parameters could be fitted to the data. Therefore, we do not wish to 
imply that one model “outperformed” the other. Instead, our point is 

that both approaches can predict the general decrease in performance 
with duration – which was expected for summary statistics, but perhaps 
less obvious for local features sampling. Moreover, the two underlying 
representations need not be exclusive to each other (see Subsection 6.4).

As the application of local features sampling to auditory repetition- 
detection is novel, we focus the rest of this subsection on its strengths 
and shortcomings. First, for the shortcomings, unrealistic assumptions 
were made in our simulations. To cite a few, all possible features for a 
texture category were equally likely to appear for a given texture 
exemplar; all features for a texture type had the same duration; all 
features were equally likely to be sampled. These assumptions were 
made to keep the simulation as close as possible to its core principles and 
thus clarify the intuitions derived from stimulus sampling. For natural 
textures, it is instead almost certain that some features will be more 
likely to appear than others across exemplars, because of the physical 
properties of the generative processes. Moreover, some features may 
exhibit greater perceptually saliency than others and thus become more 
likely to be sampled, contrary to the equiprobable sampling enforced 
here. Future signal models implementing stimulus sampling for auditory 
stimuli would need to address these shortcomings. In parallel, behav
ioral experiments could try to characterize the local features that arise 
from repeated natural textures, for instance by using a reverse correla
tion approach (Kaernbach, 1993).

The local features sampling approach does open new perspectives, 
however. Perhaps most importantly, it is congruent with introspection 
when listening to repeated noises or textures: one clearly hears indi
vidual “events” (Guttman & Julesz, 1963; Warren et al., 2001). The 
simulations show that such sparse events could form the basis of 
repetition-detection performance. Moreover, the formalism of the sim
ulations suggests potential cognitive mechanisms for the auditory 
repetition-detection task. Speculatively, the stimulus sampling process 
could represent the transfer of a limited number of distinctive features 
from implicit auditory sensory memory stores (Cowan, 1984; Kaern
bach, 2004; Nees, 2016) to working memory (Schneegans et al., 2020). 
To further account for the memory gain observed when a same exemplar 
reoccurs many times, one could hypothesize that reoccurring features 
are transferred from working memory to long-term memory, with 
memorized features more likely to be sampled in future presentations. 
Such a change in likelihood can naturally be introduced in the Poisson 
sampling framework, through a change of feature weights (Schneegans 
et al., 2020). Finally, there could be further possible refinements to the 
sampling mechanism, for instance by introducing temporal decays on 
the memory traces of features (Harrison, Bianco, Chait, & Pearce, 2020; 
Kent et al., 2014). Those are beyond the scope of the present study but 
would be useful to introduce further plausible constraints to cognitive 
models of the repetition-detection task.

6.3. Is repetition special?

Given the similarity between results for artificial noise and natural 
textures, it appears that the memory processes induced by repetition and 
re-occurrence generalized to natural textures.

There are several speculative arguments suggesting that repetition 
should be special for the auditory modality. From an acoustic point of 
view, it is impossible to actively search “back in time” for additional 
information once a sound has ended, unlike for visual search (Demany, 
Semal, Cazalets, & Pressnitzer, 2010; Garnier-Allain, Pressnitzer, & 
Sergent, 2023). Thus, the auditory system may have evolved to be 
exquisitely tuned to repetitions, as they provide a unique opportunity to 
re-examine auditory cues with a deeper level of processing. Also, scene 
elements that reoccur likely indicate an agent in the environment that 
may be behaviorally significant. Finally, in a Bayesian or predictive 
coding framework, events that repeat in the past may reasonably be 
assigned a higher-than-baseline probability of repeating in the future, so 
repeated sounds should be expected to alter neural processing 
(Baldeweg, 2006). Perhaps relatedly, repetitions have also been shown 
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to change the very perceptual qualities of sound, such as in the speech- 
to-song illusion (Deutsch, Henthorn, & Lapidis, 2011), which, interest
ingly, generalizes to natural textures (Rowland, Kasdan, & Poeppel, 
2019).

Thus, one interpretation of the present findings is that repetition 
overcame a putative specialized processing mode for textures. If local 
perceptual features could be preserved for at least the duration of an 
exemplar, then an immediate repetition could be detected and a 
“repetition mode” recruited. As subsequent re-occurrences of the texture 
exemplar were presented, the preserved features could have been 
consolidated into memory. Such a repetition-induced representation 
could also be beneficial to auditory scene analysis, by creating fore
ground events emerging from the background texture when repetition is 
involved (McDermott, Wrobleski, & Oxenham, 2011). A feature-based 
representation could of course co-exist with a summary statistics rep
resentation, which would still be efficient for e.g. texture category 
recognition. Such a possibility of different processing modes for natural 
textures was floated in the original texture studies (McDermott et al., 
2013; Nelken & de Cheveigné, 2013). The present data provide exper
imental support for the idea.

6.4. Time scales of representation

Another possible interpretation relies on a looser view of the di
chotomy between local features versus summary statistics. Indeed, the 
core difference between the two types of representations is the time 
scale over which features versus statistics are estimated. Thus, there 
could be an overlap between the two notions if auditory representations 
were based on multiple or even flexible time scales of integration.

There is a large and growing body of evidence suggesting the audi
tory system represents sounds over different time scales, from behav
ioral (Divenyi, 2004; Teng et al., 2016) or neural findings (Asokan, 
Williamson, Hancock, & Polley, 2021; Joris, Schreiner, & Rees, 2004; 
Norman-Haignere et al., 2022). The details of the associated theories 
differ on important points, such as whether all time scales within the 
possible range are available simultaneously, whether they depend on the 
task and context (McWalter & McDermott, 2019 in the case of natural 
textures), or whether a limited number of fixed windows exist to encode 
fine and coarse details (Teng et al., 2016). However, all accounts suggest 
that short and long time-scales may coexist in the auditory representa
tions of complex sounds.

As a result, the boundary between a relatively long-duration feature 
and a relatively short-duration statistic becomes blurry. Furthermore, 
the modeling results presented here show that representations based on 
either long-duration statistics or short-duration local features could 
provide qualitatively similar predictions, both in line with the behav
ioral data. Thus, instead of a dichotomy in kind, we suggest that the 
features versus statistics distinction may better be thought of in terms of 
a continuum over different time scales.

7. Conclusion

We have shown that naturalistic texture exemplars are amenable to 
learning when repeated exposure is available. In this respect, natural 
textures join the growing list of stochastic sounds that behave surpris
ingly similarly in a memory for noise paradigm. This main finding is 
consistent with two interpretations: the existence of a special processing 
mode when acoustic repetition is involved, to which natural textures are 
not immune, or a convergence of the feature set versus summary sta
tistics representations, if a continuum of time scales is considered.

Whereas the computational appeal of summarizing a texture to its 
statistics is obvious, one may wonder what use there could be to store 
the detailed acoustic features of a given exemplar? It could be that such a 
finding is simply the by-product of powerful plasticity mechanisms 
triggered by repetition, which are otherwise useful to generate sparse 
representations of meaningful sounds (Wang et al., 2020). We speculate 

that, more generally, it is the sign of the auditory system adapting its 
internal representations to the statistical regularities of its environment.
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