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ABSTRACT

Even though memory plays a pervasive role in perception, the nature of the memory traces left by past sounds is
still largely mysterious. Here, we probed the memory for natural auditory textures. For such stochastic sounds,
two types of representations have been put forward: a representation based on sets of temporally local features,
or a representation based on time-averaged summary statistics. We synthesized naturalistic texture exemplars
and used them in an implicit memory paradigm based on repetition, previously shown to induce rapid learning
for artificial sounds such as white noise. Results were similar for artificial and natural sounds, exhibiting a
general trend for a decrease in repetition detection performance with increasing exemplar duration, although
with some variation depending on texture type. This trend could be captured by a summary statistics model, but
also by a new model based on the random sampling of temporally local features. Moreover, repeated exposure to
a same natural texture or artificial noise exemplar systematically induced a performance gain, which was
comparable across all sound types and exemplar durations. Thus, natural texture exemplars were amenable to
learning when repeated exposure was available. The findings are consistent with two interpretations: the exis-
tence of a special processing mode when acoustic repetition is involved, to which natural textures are not im-
mune, or a convergence of the local features versus summary statistics descriptions if a continuum of time scales
is considered for auditory representations.

1. Introduction

1.1. Context and motivation

traces left by past sounds, however, is still largely mysterious. Here, we
probe the memory for natural auditory textures. For such stochastic
sounds, two types of representations can be hypothesized: a represen-
tation based on temporally local features (Agus, Thorpe, & Pressnitzer,

Auditory perception must combine the acoustic information reach-
ing the ears at every moment in time with information from the past,
stored in memory. This is obviously the case when rapidly recognizing
sounds that have acquired meaning through exposure, such as for
instance one’s own ringtone (Roye, Schroger, Jacobsen, & Gruber,
2010). More generally, a pervasive role of memory in perception is at the
core of theories based on Bayesian inference or predictive coding, as
both approaches assume that a model of the world has been somehow
internalized through experience (Heilbron & Chait, 2018; Kok, Mostert,
& de Lange, 2017; Press, Kok, & Yon, 2020). The nature of the memory
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2010) and a representation based on time-averaged summary statistics
(McDermott, Schemitsch, & Simoncelli, 2013).

The temporally local features hypothesis stems from a line of
research that characterized the perception of repeated sounds. When
hearing a repeated exemplar of white noise, listeners report the emer-
gence of individual events, often described as “rasping” or “clanks”
(Guttman & Julesz, 1963; Warren, Bashford, Cooley, & Brubaker, 2001).
Subsequent experiments have confirmed that the features used to detect
repetition in white noise generally seem to have a local time-frequency
extent (Kaernbach, 1993; Ringer, Schroger, & Grimm, 2023). Recently,
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the findings have been extended to longer-term memory traces. When
listeners were exposed to the same exemplar of noise which reoccurred
several times during an experimental block, behavioral evidence of a
“memory for noise” lasting up to several weeks was observed (Agus
et al., 2010; Viswanathan, Rémy, Bacon-Macé, & Thorpe, 2016). As the
duration of the learnt noise exemplars extended to the multi-second
range, it seemed unreasonable that listeners memorized the thousands
of samples defining one particular noise exemplar. Rather, as was the
case for the immediate repetition of noise, it was hypothesized that
listeners stored a limited set of temporally local features, which could be
used as a compact “watermark” for a given noise exemplar (Agus et al.,
2010). Neural correlates of the phenomenon were consistent with the
local features hypothesis, with the added proposal that feature sets could
be idiosyncratic and thus unique to each listener/noise combination
(Andrillon, Kouider, Agus, & Pressnitzer, 2015; Luo, Tian, Song, Zhou, &
Poeppel, 2013; Ringer et al., 2023). Finally, similar findings were ob-
tained with stochastic artificial sounds other than white noise, such as
random melodies (Bianco et al., 2020; Bianco, Hall, Pearce, & Chait,
2023), random rhythms (Kang, Agus, & Pressnitzer, 2017), or tone
clouds with a broad range of spectro-temporal complexities (Agus &
Pressnitzer, 2021). Rapid plasticity was even evidenced with repeated
exposure to noise exemplars during sleep (Andrillon, Pressnitzer, Léger,
& Kouider, 2017). Overall, repetition seems to automatically trigger the
rapid formation of memory traces for many kinds of sounds.

The summary statistics hypothesis stems from work on natural
auditory textures (McDermott et al., 2013; McDermott & Simoncelli,
2011). Textures can be defined as sounds with stochastic but stationary
characteristics. A natural texture is the sound emanating from an un-
derlying stationary generative process in the environment, such as the
sound of fire crackling, water flowing, or wind blowing. The first
important finding of this line of research was that synthetic sounds
matched to natural sounds in a few long-term statistics were readily
identified as natural textures by listeners (Geffen, Gervain, Werker, &
Magnasco, 2011; McDermott & Simoncelli, 2011). This showed that
summary statistics were sufficient to recognize texture categories.
Perhaps even more intriguingly, when asked to discriminate between
two exemplars of the same texture (e.g., two instances of fire crackling),
listeners’ performances decreased as the exemplar durations increased.
This seems counter-intuitive, as for many other tasks, longer durations
usually result in improved discrimination performance (Teng, Tian, &
Poeppel, 2016). However, such a finding could be understood if the
discrimination was based on time-averaged summary statistics, and not
on temporally local features that could be accrued as duration increased.
To quote McDermott et al. (2013, abstract): “These results indicate that
once these sounds are of moderate length, the brain’s representation is limited
to time-averaged statistics, which, for different examples of the same texture,
converge to the same values with increasing duration”. Summary statistics
for textures could be the auditory equivalent of “ensemble coding” for
visual perception, which is an efficient way to capture the gist of natural
images (Whitney & Leib, 2016).

Taken to an extreme, a consequence of the summary statistics hy-
pothesis would be that different exemplars of the same natural texture
cannot be memorized once they reach a moderate length, simply
because they cannot be discriminated any more. Therefore, unlike for
artificial sounds, repeated exposure to a natural texture exemplar may
not induce a memory trace specific to that exemplar. Such a radical
hypothesis is overly simplistic, however. In the original McDermott et al.
(2013) study, texture exemplar discrimination did not fall to chance
even at the longest duration tested. The authors thus left open the pos-
sibility that summary statistics may coexist with other types of repre-
sentations. In their comment to the original study, Nelken and de
Cheveigné (2013) strikingly summarized such a position by referring to
“a skeleton of events on a bed of textures”. Their point was that not every
sound should be treated as a texture and thus summarized by statistics.
For events, such as a bird call, local features would be preserved, leading
to a dual representation of a sound scene. However, it is yet unknown if
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and how “events” may arise from natural textures themselves.

Another important point made by the texture literature is that the use
of natural sounds could be critical to recruit ecologically relevant
auditory processes. Such processes and their attending representations
would not be called into action for artificial sounds (Theunissen & Elie,
2014). For instance, the auditory system may enter a “texture mode”
when it recognizes a natural texture, and actively discard any tempo-
rally local features in favor of a more compact summary statistics rep-
resentation (Nelken & de Cheveigné, 2013). Indeed, it makes much more
sense to be able to recognize the physical cause of a texture (McDermott
et al., 2013; McDermott & Simoncelli, 2011; Nelken & de Cheveigné,
2013) or even some of its characteristics, such as temperature for
flowing water (Velasco, Jones, King, & Spence, 2013), than to recall the
acoustic details of a given texture exemplar. Auditory cognition may
thus be tuned to efficient representations of natural sounds and their
statistical properties (Gervain & Geffen, 2019) in order to facilitate the
categorization of the physical events making up our environment (Traer,
Norman-Haignere, & McDermott, 2021).

The sounds that have been used in the memory for noise paradigm,
such as white noise or tone clouds, can be seen as artificial textures.
However, natural textures have not been used yet in such a paradigm.
Here, we synthesized naturalistic sound textures using the original
McDermott and Simoncelli (2011) and used them in the repetition-based
“memory for noise” paradigm of Agus et al. (2010), alongside one
condition using white noise for comparison.

1.2. Previous results and specific predictions

The memory for noise paradigm introduced by Agus et al. (2010)
required participants to discriminate between trials containing fully
random noise and trials made of abutting repetitions of the same noise
exemplar. This repetition-detection task is possible for a range of
exemplar durations, from tens of milliseconds to several seconds
(Guttman & Julesz, 1963; Kaernbach, 2004; Warren et al., 2001). When
a single repetition is presented, performance decreases as exemplar
duration increases, reaching chance for exemplar durations of about 6 s
(Kaernbach, 2004, their Fig. 2). Agus et al. (2010) introduced an addi-
tional experimental condition: some noise exemplars re-occurred over
many trials in their experiments. Perhaps surprisingly, a constant
“memory gain” was observed for re-occurring exemplars, irrespective of
duration for exemplars up to 2 s long (the longest duration tested in Agus
et al., 2010, their Fig. 4B). This was interpreted as signaling a memory
trace based on a few, temporally local features at all durations.

From the now abundant literature about natural textures, the most
relevant results for the present study are that of Experiment 2 of
McDermott et al., (2013, their Fig. 2b). They introduced a texture
exemplar discrimination task, where participants heard three different
sounds in each trial. All three sounds were from the same natural texture
category (e.g. Fire). Two of them were acoustically identical, whereas
the third one was a different exemplar from the same texture category.
Participants had to indicate the odd one out. Exemplar durations ranged
from 40 ms to 2500 ms. Performance decreased with duration, from
about 90 % correct at 40 ms down to about 75 % correct at 2500 ms (the
longest duration they tested). This was interpreted by the convergence
of summary statistics towards their expected value for the texture
category as exemplar duration increased.

From both sets of results, a decrease in performance with duration is
therefore expected for a repetition-detection task, for natural textures
and noise. For repetition-detection with re-occurring exemplars, a con-
stant memory gain is expected for artificial noise. For natural textures,
there are two possible predictions. Either the representation of repeated
natural textures includes temporally local features, and then they should
display constant memory gain for all durations just like noise. Or,
because of a specific “texture mode” that actively discards temporally
local features, their representation is exclusively based on summary
statistics. As longer-term memory for summary statistics has not yet
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been investigated, the memory gain in this case is essentially unknown.

2. Methods
2.1. General procedure

All experiments were performed online, as data collection took place
during the pandemic. The method was otherwise identical to the orig-
inal “memory for noise” study (Agus et al., 2010). Briefly, in such a
paradigm, each trial consists of a single sound: either noise (N), or
repeated noise (RN), that is, noise for which the first half is identical to
the second half. The repetition is seamless, with no acoustic cue nor
silent interruption between halves. The participant’s task is to report
whether the trial contained a repetition or not. For some trials, the RN is
randomly drawn anew, so participants only hear each RN stimulus once.
Such a condition taps into short-term memory processes and provides a
baseline repetition-detection performance, which may depend on
various stimulus parameters such as duration (Kaernbach, 2004; Warren
et al., 2001). However, without informing the participants, a third
condition is introduced: one RN exemplar, called the reference RN
(RefRN), re-occurs over different trials throughout an experimental
block. An improved performance for RefRN trials compared to RN trials
is interpreted as learning of the RefRN exemplar.

The stochastic stimuli used here were white noise, replicating pre-
vious studies, but we also introduced natural textures. Three texture
categories were chosen: fire crackling (Fire), water running down a
stream (Stream), and wind blowing (Wind). Texture trials (Tx) were all
different and generated as in McDermott and Simoncelli (2011).
Repeated textures (RTx) and reference repeated texture (RefRTx) trials
were obtained by cross-fading two copies of a same texture exemplar.
lustrations of the stimuli are shown in Fig. 1. As can be seen, even
though the choice of texture was largely arbitrary, they all differed in
their spectro-temporal characteristics, which in turn differed from white
noise.

Different trial durations were tested on different experimental
blocks: 250 ms, 500 ms, 1000 ms, 2000 ms, and 4000 ms. This corre-
sponded to exemplar durations of 125 ms, 250 ms, 500 ms, 1000 ms, and
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Fig. 1. Acoustic characteristics of white noise and natural textures. Illustrative
examples of cochleagrams for the four different sound categories. The time-
frequency cochleagrams use brighter colors to represent energy within simu-
lated auditory filters (see Methods). In all cases, repeated trials are shown, so
the first 500-ms are identical to the last 500-ms. Note that there is no acoustic
discontinuity at the repetition onset. The temporal waveforms (top inset of each
panel) and spectral average (right inset of each panel) are also provided.
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2000 ms, respectively, matching exactly Agus et al. (2010) for noise and
approximately McDermott et al. (2013) for natural textures.

2.2. Participants

72 individuals (13 female, 59 male), aged between 18 and 38 (M =
29.7 SD = 1.66), with self-reported normal hearing participated in the
online experiment in return for monetary compensation. This corre-
sponded to 18 participants per texture, similar to the number of par-
ticipants in previous comparable in-lab studies. The sample size was
preregistered (see below). Participants were recruited through Prolific
(Oxford, UK). Before the experiment, all participants provided informed
consent. At the end of the experiment, an online debriefing text was
presented. The UCL Research Ethics Committee approved the protocol
(#1490/009).

2.3. Stimuli

Because generating naturalistic textures can be computationally
intensive, they were synthesized offline and stored as sound files, which
were loaded to the participant’s browser during the experiment. The
synthesis algorithm was the one from McDermott and Simoncelli (2011)
as available online (http://mcdermottlab.mit.edu/downloads.html). In
total, 9 sound files with a different random seed, each 392 s long, were
synthesized for each of the three categories of natural sound textures
(Fire, Stream, Wind). For symmetry, 9 sound files, also 392 s long, were
generated for white noise. Each of the 36 unique sound files (9 random
seeds x 4 sound types) was used twice, but always for different partici-
pants. To generate a trial, short exemplars of the desired duration were
cut sequentially (no overlap between exemplars) from the 392 s-long
sounds. For repeated trials (RN/RTx and RefRN/RefRTx), the same
exemplar was collated twice, with a 10-ms crossfade. For non-repeated
trials (N/Tx), two different exemplars were collated, with the same
crossfade technique. All sounds were presented as uncompressed .wav
files.

2.4. Procedure

The experiment was conducted using the Gorilla platform (Cam-
bridge, UK). Before starting the experiment, several checks were run to
ensure data quality, including browser checks and headphone checks
(Milne et al., 2021). Individuals who failed any of these checks were
rejected from participating, so all participants are assumed to have been
wearing headphones. Participants were then presented with an infor-
mation sheet and gave their informed consent.

Each participant completed five experimental blocks, each of which
corresponded to a different exemplar duration, all for the same sound
type. Each participant was thus only tested on one sound type (e.g.
White noise or Fire). Each block was preceded by a brief familiarization
phase with feedback. The participant first heard a sound with 10 repe-
titions of a given exemplar, to illustrate the cues to repetition at the
duration of the block. This familiarization sound could be played up to
three times. Then, four training trials were provided. In the training
trials, the stimulus either consisted of an exemplar repeated 10 times or
of 10 different exemplars. Participants were instructed to report whether
they heard a repetition. Immediate feedback was given. Further training
trials followed, with gradually increasing difficulty. Those training trials
contained 4 repetitions (10 trials), 3 repetitions (12 trials), and finally 2
repetitions as in the main experiment (20 trials). Training trials were
always 50 % RN/RTx and 50 % N/Tx (no RefRN/RefRTx). The training
session was immediately followed by the experimental block at the same
duration. In the experimental block, participants did not receive im-
mediate feedback but did see their cumulative accuracy (percent cor-
rect) at the end of each block. Each block consisted of 40 N/Tx trials, 20
RN/RTx trials, and 20 RefRN/RefRTx trials, with those conditions pre-
sented in a pseudorandom order (Ref stimuli were never presented on
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successive trials).

Participants were incentivized through bonus payments that would
be calculated based on their overall accuracy at the end of the experi-
ment (Bianco, Mills, de Kerangal, Rosen, & Chait, 2021). Finally, par-
ticipants were also informed that their data would be rejected if they
scored less than 60 % accuracy on the task to discourage participants
from guessing at random.

2.5. Statistical analyses

We used the d’ sensitivity index of signal detection theory to estimate
performance. Hits were defined as “repeated” responses for RN/RTx and
RefRN/RefRTx trials. False alarms were defined as “repeated” responses
for N/Tx trials. When the proportion of hits or false alarms reached O or
1 for a given participant and measurement, a correction corresponding
to plus or minus half-a-trial was applied (Macmillan & Creelman, 2004).

Analyses of variance (ANOVAs) and t-tests were used as inferential
tests, with an a-level of 0.05. Reporting convention follows the APA
guidelines, 7th edition, so all p-values less than 0.001 are reported as p
< 0.001. The main analysis was a mixed-design ANOVA, fully reported
in Table Al. Because the false alarm rate was shared between RN/RTx
and RefRN/RefRTx condition, which could have introduced correlations
across measurements, the ANOVAs and the paired t-tests contrasting
conditions were performed on the z-transformed hit rates used to
compute d’ (Agus & Pressnitzer, 2021). We further checked that per-
forming the same analyses on d’, corresponding to z-transformed hit
rates minus z-transformed false alarms, led to strictly identical conclu-
sions. A Greenhouse-Geisser correction was applied when Mauchly’s test
indicated a violation of the sphericity assumption (p < 0.05). Further
partial ANOVAs and t-tests were run to help interpret the main analysis,
as it included several factors and revealed second- and third-order in-
teractions. The partial ANOVAs used repeated-measures or mixed-
design ANOVAs as appropriate. When performing partial analyses
where all natural textures were considered together, and because
different participants ran different texture blocks, a “participant” was
defined as the average of individual results in the three natural texture
blocks, in order of enrolment. All ANOVAs were run using JASP
(JASPTeam, 2024). Effect sizes are reported as generalized 77, notated
11%, as recommended for mixed designs (Lakens, 2013, p. 6).

2.6. Preregistration and data availability

The study was preregistered (ResearchBox #2762). There were
minor deviations to the preregistration: the noise sound category was
added for comparison; the hit-rate over time analyses were omitted due
to the large number of conditions; the ANOVAs were run on z(hits) and
not d’ as justified above; partial ANOVAs were added to interpret the
outcome of the full analysis. The main characteristics of the design
(sample size, exclusion criteria, duration conditions, test procedure,
main analyses) exactly followed the preregistration. The full dataset is
available online (ResearchBox #2762).

2.7. Summary statistics model

Summary statistics were computed for the exact stimulus set that was
presented to participants. The model of McDermott et al. (2013) was
used, downloaded from the author’s website and using the default pa-
rameters corresponding to the published study. To avoid repetition ar-
tifacts, only the first half of our stimuli was fed to the model. The
variance of statistics was estimated across exemplars, as in McDermott
etal. (2013). In our case, for each texture type and duration, we had 540
available exemplars (40 N trials, 20 RN trials, from 9 different batches).
We arbitrarily grouped the exemplars in groups of 10, computed the
statistics’ variance for each group of 10, and derived the median and
interquartile range of the statistics’ variance across the 54 groups.
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2.8. Local feature sampling

A novel feature sampling simulation was also introduced. Its
implementation is described alongside the simulation description in
Section 6. The simulation code is available online (ResearchBox #2762).

2.9. Acoustic analyses

To obtain the illustrations of the stimuli provided in Fig. 1., stimuli
were passed into an auditory model as described in Agus, Suied, Thorpe,
and Pressnitzer (2012). The model consisted of a broadband pre-
emphasis bandpass filter (0.4-8.5 kHz), a gammatone auditory filter-
bank, half-wave rectification, square root compression, and lowpass
filtering at 100 Hz. Such a time-frequency representation, termed a
“cochleagram”, is intended to roughly mimic the information available
after peripheral auditory processing.

3. Results
3.1. Validation of the online testing procedure

So far, all studies using variants of the memory for noise paradigm
but two (Dauer, Henry, & Herrmann, 2022; Ringer, Schroger, & Grimm,
2022) were performed under highly controlled laboratory conditions. It
was thus unclear whether the findings, presumably dependent on subtle
acoustic cues, would be robust enough to translate to online testing.

Fig. 2A shows the average results for the 0.5-s duration, for white
noise, as this is the duration condition that was most extensively tested
in previous investigations. Performance is expressed as the sensitivity
index d’ of signal detection theory. Baseline performance for the within-
trial repetition detection task RN, for which the repeated noise exemplar
was novel on each trial, was modest but still above chance (M = 0.67; t-
test against the chance value of d’ = 0: t(17) = 5.54, p < 0.001).
Importantly, in the RefRN condition for which the same noise exemplar
re-occurred throughout a block, performance improved (M = 2.06;
paired t-test against RN performance t(17) = 5.40, p < 0.001). This
pattern of results replicates in-lab findings using white noise (Agus et al.,
2010; Agus & Pressnitzer, 2013), validating the online procedure.

Fig. 2B shows the first set of results for natural textures, again for the
0.5-s duration, with performance averaged for all three texture cate-
gories. For these relatively short-duration natural texture exemplars,
performance was generally higher than for noise. In the baseline RTx
condition, performance was well above chance (M = 2.07; t-test against
the chance value of 0: t(17) = 13.67, p < 0.001). In the RefRTx condi-
tion, performance further improved (M = 2.74; paired t-test against RTx
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Fig. 2. Performance for 500-ms long exemplars. A). White noise. Repetition
detection performance is shown, expressed as the d’ sensitivity index of signal
detection theory. For the Repeated Noise condition (RN), the noise exemplar
was novel in each trial. For the Reference Repeated Noise condition (RefRN),
the same noise exemplar re-occurred on 20 trials randomly interspersed in the
experiment. Dots represent individual participants, connected by thin lines
across conditions. Mean performance and standard error about the mean are
shown as thick lines. B). Natural textures. Performance averaged for the three
natural textures. Same as A).
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performance t(17) = 5.64, p < 0.001). This shows that within-trial
repetition detection and across-trial learning are possible with rela-
tively short texture exemplars.

3.2. Repetition detection and rapid learning for short and long texture
durations

Behavioral performance was measured for repeated (RN/RTx)
stimuli and for repeated and re-occurring stimuli (RefRN/RefTx).
Repetition detection was expected to decrease with duration and a
memory gain was hypothesized for re-occurring stimuli, at least for
noise. Fig. 3 shows the results for noise and textures as a function of
exemplar duration (trial duration itself was twice as long). For noise,
there was a steady decrease in performance in the RN condition from
short to long durations, but, importantly, the memory gain observed for
RefRN was approximately constant across the whole range of durations.
For textures, performance in the RTx condition was always good
(average d’ above 1), but, contrary to the expectation, had a band-pass
shape with a peak at 250 ms. Importantly again, a memory gain for
RefTx was observed throughout the whole range of durations, a novel
finding.

These observations were formally tested by two separate repeated-
measures ANOVAs, one for noise and one for textures, with factors
“Condition” (2 levels, RN and RefRN for noise or RTx and RefRTx for
textures) and “Duration” (5 levels, [125, 250, 500, 1000, 2000] ms). For
noise, significant effects of Condition (F(1,17) = 44.81, p < 0.001, 11?; =
0.32) and Duration (F(4,68) = 11.14, p < 0.001, né = 0.18) were
observed, without any interaction between the two factors (F(4,68) =
1.42,p =0.24, 17% = 0.03). Similar findings were obtained with textures,
with significant effects of Condition (F(1,17) = 470.4, p < 0.001, qZG =
0.47) and Duration (F(2.53,46.0.6) = 14.28, p < 0.001, né = 0.23). For
textures, there was a significant interaction between Condition and
Duration, with a small effect size (F(3.28,55.68) = 5.00, p = 0.003, 7 =
0.09). Overall, the ANOVAs confirmed that, while duration affected
performance, the advantage provided by repeated exposure to a same
exemplar was at least as large for longer durations compared to shorter
durations, for both noise (RefRN vs RN) and textures (RefTx vs RTx).

Finally, for textures, post hoc tests were run to compare each data
point with all others, using a conservative Bonferroni correction (45
comparisons). We only report the crucial tests for the novel texture
condition, namely, the possible memory gain for RefTx over RTx,
reflecting learning of individual texture exemplars. At all tested dura-
tions, including the longest ones, a significant effect of RefTx was
observed over RTx (all Bonferroni-corrected p < 0.001, except for 125
ms for which p = 0.003 and 250 ms for which p = 0.002).
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3.3. Detailed effect of sound categories

To investigate in further detail whether the different texture cate-
gories influenced performance, a mixed-design ANOVA was run with
factors “Condition” (2 levels: RN/RTx and RefRN/RefRTx), “Duration”
(5 levels: [125, 250, 500, 1000, 2000] ms), and “Sound category” (4
levels: White noise, Fire, Stream, Wind). This main analysis is reported
in full detail in the Appendix, Table Al. To summarize, all main effects
were significant (p < 0.001). The two-way interactions Condition *
Duration and Texture * Duration, as well as the three-way interaction
Condition * Texture * Duration, were also significant (p = 0.003 or less),
with relatively small effect sizes (;1%; = 0.05 or less).

To help interpret the effect of sound category in relation to our
question of interest, the memory for natural textures, we transformed
the data to directly estimate the amount of learning that was afforded by
repeated exposure to a sound exemplar. To this effect, we computed the
memory gain, defined as performance for the trials where the sound
exemplar re-occurred throughout a block (RefRN/RefTx) minus per-
formance where sound exemplars were novel on each trial (RN/RTx).
The memory gain obtained for the different sound categories and du-
rations is displayed in Fig. 4A. Even though the results were somewhat
noisy, there was no trend for a smaller gain at longer texture durations,
nor for a systematic advantage of white noise over natural textures.

A mixed-design ANOVA was performed on the memory gain with
factors “Duration” (5 levels: [125, 250, 500, 1000, 2000] ms), and
“Sound category” (4 levels: White noise, Fire, Stream, Wind). An effect
of Duration was observed (F(4,272) = 5.04, p < 0.001, ;12(; = 0.05),
suggesting that the memory gain was, perhaps paradoxically, slightly
larger for longer durations. However, due to the small effect size, we did
not investigate the effect further with post hoc tests, and conservatively
interpret this finding as a largely constant memory gain over all tested
durations. Crucially, no effect of Sound category was found (F(3,68) =
2.21, p = 0.10, 52 = 0.02). The Duration * Sound category was signifi-
cant, with a medium effect size (F(12,272) = 2.57, p = 0.003, né =0.08).
The interaction suggests that the small increase in memory gain with
duration was mostly due to two natural textures, Fire and Stream.

Finally, we examined the baseline performance for individual sound
categories in the repetition detection task, the conditions RN/RTx. The
results are shown in Fig. 4B. Breaking-up the data into sound categories
revealed that the peak at 250 ms observed in the mean texture data
(Fig. 3B) was due to the Fire and Stream textures. The Wind texture
instead displayed a peak at 1000 ms.

A mixed-design ANOVA was performed on the performance in the
RN/RTx condition, with factors “Duration” (5 levels, [125, 250, 500,
1000, 2000] ms), and “Sound category” (4 levels, White noise, Fire,
Stream, Wind). As for the memory gain analysis, an effect of Duration
was observed (F(4,272) = 24.14, p < 0.001, ;1% = 0.19). Unlike for the
memory gain analysis, this time an effect of Sound category was
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Fig. 3. Effect of exemplar duration. A). White noise. Mean performance across participants is shown for the RN and RefRN conditions, as a function of exemplar
duration. Error bars represent standard error about the mean. B). Natural textures. Performance averaged for the natural textures. Same as A.).
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Fig. 4. Effect of sound categories. A). Learning was assessed by computing the sensitivity increase due to repeated exposure. A “Memory gain” was defined as
performance for the trials where sound exemplars re-occurred across 20 trials (RefRN/RefTx) minus performance where sound exemplars were novel on each trial

(RN/RTx) B). Performance for the within-trial repetition detection task (RN/RTx).

observed, with a large effect size (F(3,68) = 17.68, p < 0.001, né
0.21). The Duration * Sound category was also significant (F(12,272) =
3.88, p < 0.001, 7% = 0.10).

A post hoc comparison of all data points for Fig. 4B was performed
(Duration * Sound category interaction). Briefly, likely because of large
number of comparisons, the robustness of the pattern of performance
seen in Fig. 4B could not be formally confirmed. In particular, the
apparent peaks in performance at 250 ms for Fire and Stream and at
1000 ms for Wind were not significantly different from their neighbors
(Table A2). So, whereas there were significant differences across sound
categories with large effect size, pinpointing them to specific durations
and textures would require further experimental data.

In summary, these analyses show that the texture type can influence

baseline repetition-detection performance, in terms of overall

Env. mean Env. variance

N

performance but also in terms of performance change with exemplar
durations. For re-occurring exemplars, all sound categories exhibited a
memory gain. Importantly, there was no clear advantage of noise, which
produced the amount of memory gain expected from previous studies,
over natural textures. Natural textures produced sizeable memory gains,
even at the longest durations tested.

4. Signal model based on summary statistics

A major insight of the summary statistics approach is that, for sto-
chastic sounds with an underlying stationary generative process, fea-
tures derived from auditory models will converge to their expected
mean as duration increases (McDermott et al., 2013; McDermott &
Simoncelli, 2011). This convergence

allows for a compact
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Fig. 5. Variance of summary statistics. The variance of seven summary statistics was evaluated over the full stimulus set used in our experiments. Median values are
shown on a logarithmic scale, with error bars corresponding to the interquartile range (summary statistics and display format as in McDermott et al., 2013, Fig. 1c).
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representation of natural auditory textures. The corresponding reduc-
tion in the variance of statistics has been proposed as the explanation for
the otherwise counterintuitive finding that discrimination performance
between two exemplars of the same texture type decreases with longer
durations. Our repetition-detection task can be construed as a kind of
exemplar discrimination task, so could the same model apply?

We computed the variance of summary statistics over all exemplars
of our stimulus set, using the model of McDermott et al. (2013). Results
are displayed in Fig. 5. The reduction in statistics’ variance with dura-
tion was confirmed. The variability of our variance estimates was similar
to previous reports. This confirms that our stimulus generation strategy
was appropriate, even though we only matched the statistics of the
synthesized stimuli to those of target natural textures over 392 s (see
Methods) with no additional constraint for the shorter exemplars actu-
ally used in the experiments.

A qualitative comparison of the variance patterns can be made with
the results of our repetition-detection task (Fig. 4B). The summary sta-
tistics model captured the most important trend of decreasing perfor-
mance with duration, as expected. The model was also mostly successful
in predicting the better performance observed for the Fire and Stream
texture types at short durations, reflected by higher statistics’ variance.
However, the model did not predict the more subtle differences observed
across texture types. In particular, the non-monotonic pattern observed
for some natural textures categories was not reflected in any summary
statistics variance pattern. The ordering of texture types in terms of
statistics variance was also dependent on the statistics being considered,
and the convergence in performance for Fire, Stream and Wind at longer
durations was not captured.

Overall, the core prediction of reduced statistics’ variance with
longer exemplar duration was verified in our stimulus set. It is possible
that changing model parameters could lead to a better fit with the finer
details our data. However, the aim here was to document the results of
the standard summary statistics model, so no such fit was attempted.

5. Simulation based on local features sampling

We now turn to a different idea: in addition to or instead of summary
statistics, listeners may use a small set of temporally local features to
perform the repetition-detection task. Such a hypothesis has been put
forward many times to interpret otherwise puzzling aspects of
repetition-detection for stochastic signals, such as the distinctive fea-
tures subjectively heard in repeating noise (Guttman & Julesz, 1963;
Warren et al., 2001), the ability to tap consistently to repeating noise
(Kaernbach, 1993; Ringer et al., 2023), or the constant memory gain
observed across sound durations (Agus et al., 2010; Agus & Pressnitzer,
2021; Andrillon et al., 2015; Kang et al., 2017). Moreover, idiosyncratic
patterns of performance suggest that not all listeners use the same fea-
tures for a given stochastic signal (Agus et al., 2010; Andrillon et al.,
2015; Kaernbach, 1993). To the best of our knowledge, no attempt has
been made to derive quantitative predictions from such a proposal.

We do so here by simulating the performance expected if listeners
based their perceptual decisions on a small number of features randomly
sampled from the sound. Such an idea is directly inspired by the classic
“Stimulus Sampling Theory” (Estes, 1950). As an early attempt to
mathematically derive quantitative behavioral characteristics of
learning, the stimulus sampling theory has led to numerous variants, for
both memory and perceptual tasks (see Kent, Guest, Adelman, & Lam-
berts, 2014, for a review). More recently, stochastic sampling of discrete
stimulus features has been put forward as a unifying framework for
computational and neural models of visual working memory
(Schneegans, Taylor, & Bays, 2020).

Our implementation was kept as minimal as possible, to highlight the
generic consequences of stimulus sampling. A texture exemplar was
abstractly represented as a list of discrete features: a list of integers
randomly drawn from a dictionnary of size M, the first parameter of the
simulations. The number of features representing an examplar was
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decided by the second parameter of the simulation, R, the number of
features per second. Random sampling of the features list was imple-
mented by Poisson thinning of the full list, as in Schneegans et al.
(2020). Reporting a repetition was finally decided by checking for
multiple appearances of the same feature in the sampled list.

Fig. 6A further illustrates how the simulation was applied to our
repetition-detection task. First, for each texture examplar, a list was
drawn of (R*duration) random integers, uniformly distributed between
1 and M. To simulate repeated trials, a texture examplar A was drawn
and the trial was constructed as the catenated list of features AA. For
non-repeated trials, another texture examplar B was drawn and the trial
was constructed as the catenated list of features AB. Random sampling of
the full feature list was performed by Poisson thinning with rate A and
equal weight for each feature (Schneegans et al., 2020). The simulated
decision was “Repeated” if there were repeated features in the sampled
list.

The simulation’s formalism can be interpreted as follows. The size of
the dictionary M and the feature rate R are characteristics of a texture
type: some textures may display a broader variety of features than
others, and features may (on average) be longer or shorter for different
texture types. The sampling process is the core idea we wished to probe:
not all features will be available for the perceptual decision, presumably
because of constraints on memory processes, but also because stochastic
stimuli such as noise or natural textures sound initially “featureless”.
Note that our model does not simulate an online comparison of each and
every incoming feature to features stored in memory. Instead, the
sampling occurs on the full stimulus representation, in order to present
only a subset of features to the perceptual decision process. Finally, the
decision rule is a based on a simple criterion that counts the number of
repeated features in the sampled feature list.

This minimal implementation was sufficient to predict decreasing
performance with texture duration. Intuitively, hits happen in the
simulation when the random sampling process picks up twice the same
feature in the AA list. This is more likely if the AA list is short. False
alarms happen when the same feature appears by chance in the AB list.
This is more likely if the AB list is long when M is large enough. Thus, in
general, hits will decrease and false alarm will increase with duration,
predicting declining performance. However, the simulation parameters
can modulate the qualitative prediction: if M is low, there are fewer
different features to sample from for a given texture type, so both hits
and false alarms should increase. If R is low, the feature list will be short
compared to A at short durations, again impacting hits and false alarms.
We therefore turned to numerical simulations to further probe the
simulations’ behavior.

Grid searches on the texture-dependent parameters M and R were
performed to find the best fits to the repetition-detection results of
Fig. 4B. For simplification, and after pilot simulations showed the
robustness of the predictions for different choices, all parameters related
to the sampling and decision process were kept fixed: a Poisson rate
parameter of A = 8 was used throughout, corresponding to an expected
rate of 8 sampled features per stimulus. The criterion for deciding on a
repeat was set at 1, meaning at least a single repeated feature after
sampling was enough to report a repeat. Results of the best fits (mini-
mization of quadratic error) are shown in Fig. B1. This figure confirms
that decreasing performance can be predicted purely through sampling,
without any temporal averaging operation.

To improve the fit to our data, and in particular to capture the non-
monotonic trends observed for some texture types, we introduced a
modification to the sampling process. The Poisson rate parameter A was
limited to the total number of features available in a stimulus, meaning
that the expected number of sampled features was either 8 or the total
number of stimulus features, whichever was smallest. The best fits are
shown in Fig. 6B. The distribution of the goodness of fits over M and R
are shown in Fig. 6C. With this modification, satisfactory fits were ob-
tained for all texture types. For Noise, simulation performance smoothly
decreased with duration, which is the default behavior of Fig. Bl.
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Fig. 6. Local features sampling. A. Each texture exemplar is represented by a list of features, random numbers from 1 to M. The parameter M represents the number
of different features available for a given texture type. The number of features per exemplar depends on a second parameter, R, the rate of features per second. Here,
two exemplars, A and B, are shown, with parameters [M = 100; R = 10] and duration = 1 s. Trials for the experiments are lists of features, constructed from texture
exemplars. In repeated trials, the same exemplar is repeated (AA). In non-repeated trials, two different exemplars are collated (AB). To reach a perceptual decision,
features are randomly sampled from the trial’s list of features. If a same feature appears more than once in the sampled features, then a “Repeated” answer is
provided. From this strategy, all possible experimental outcomes can be simulated. B. For each texture type, the d’ values simulated (solid lines) are compared to the
behavioral results (dashed lines, reproduced from Fig. 4B). The panel title indicates the parameters of the simulation. C. Distribution of goodness of fits (shown as -log

(err?®) over the parameter space investigated in the grid search.

Perhaps as a result, good fits were obtained over a broad parameter
range, with the best fit observed for M = 61 and R = 37. The non-
monotonic pattern of performance for Fire and Stream was simulated
thanks to a lower feature rate (R = 11 or 10) and a large number of
features (M = 183 or 84). Finally, the relatively flat performance for
Wind was obtained for a very low feature rate (R = 4) and a small
number of possible features (M = 22). The numerical values of M and R
at the best fit should not be taken too literally, though, as there were
many parameter combinations that produced approximately equally
good fits (Fig. 6C). Nevertheless, the regions where good fits were
observed seemed to match intuition, as Fire and Stream sound sparser
than Noise (lower R), but with more possible distinct features than Noise
(higher M). Wind, which in our stimulus set covered the narrowest

frequency band, was fitted with both low R and low M.
6. General discussion

Combining ideas and techniques from two different lines of research,
we applied a memory for noise paradigm to natural auditory textures
and artificial white noise. Exemplars from different texture types were
used in a repetition detection task, with parametrically varied exemplar
duration. Results were similar for natural and artificial sounds: repeti-
tion detection performance was accurate for short durations and poorer
for long duration, even though a non-monotonic pattern of results was
observed for natural textures. An increase in performance for exemplars
that re-occurred throughout an experimental block was observed in all
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cases, which we interpreted as a memory gain. The memory gain was at
least as large for long durations than for short durations. Computational
modeling showed that two a priori distinct representations, summary
statistics and local feature sampling, could be used to predict the general
decrease in performance with duration in the repetition detection task.
After briefly comparing the behavioral results to the literature, the data
and models will be discussed in the light of the long-standing issue of
auditory representation for perception and memory.

6.1. Texture repetition-detection and texture exemplar discrimination

The results for noise replicate previous findings in repetition-
detection tasks in a laboratory setting. Agus et al. (2010) observed a
mean performance ranging from about d’ = 1.5 to about d’ = 0.5 for
exemplar durations from 125 ms to 2000 ms. This is similar, or perhaps
even slightly poorer, than what was observed here in an online setting
(Fig. 3A, RN). Moreover, re-occurring exemplars exhibited a memory
gain of about 1 d’-unit in both sets of findings (Fig. 3A, RefRN). This
further validates the use of online testing with “memory for noise”
paradigms (Dauer et al., 2022; Ringer et al., 2022).

The present results for natural textures may also be compared to the
texture discrimination task of McDermott et al. (2013, Experiment 2).
We used the exact same texture generation algorithm and tested
exemplar durations over a similar range. A difference between the two
studies is that, in the texture exemplar discrimination task, all exemplars
within a trial were surrounded by silent gaps (McDermott et al., 2013).
Here, in contrast, within-trial repetitions were seamless. Nevertheless,
there was also a direct repetition in the texture examplar discrimination
task (the odd-one-out was either the first or the last sound of a trial) and
the exact value of the silent gaps made no difference to performance.
Considering that noise learning can occur even with non-contiguous
repetition (Andrillon et al., 2015; Bianco et al., 2020; Kaernbach,
2004; Ringer et al., 2023), a direct comparison between our findings for
natural textures and the texture discrimination task of McDermott et al.
(2013) seems warranted.

We interpolated the percentage correct values provided in Fig. 2b of
McDermott et al. to the durations tested here, and converted the results
to d’. This led to interpolated performance ofd’ = [1.9,1.5,1.1, 0.9, 0.7]
for durations of [125, 250, 500, 1000, 2000] ms. This is broadly
consistent with what was observed in the present repetition-detection
task (Fig. 3B, RTx). The additional finding of the present study con-
cerns natural texture exemplars that re-occurred over 20 trials (Fig. 3B,
RefRTx). In this case, increased exposure led to improved performance
for all tested durations.

6.2. Summary statistics model and local feature sampling simulation

Both the summary statistics model and the feature sampling simu-
lation predicted the main trend of the behavioral results: a general
decrease in performance as exemplar duration increased. Summary
statistics predicted this trend by a reduced variance of statistics as
duration increased. Feature sampling predicted this trend by the prob-
abilistic effect of selecting a fixed number of local features from
increasingly long sets of possible features as duration increased. That
these two independent frameworks led to similar predictions is a novel
insight, suggesting that either one, or both, could be at play for
repetition-detection and exemplar discrimination with natural textures.

Outright, it is important to stress that a quantitative comparison of
the two approaches is unwarranted on the basis of the present results
only. The summary statistics model is a complete signal processing
pipeline, with parameters that were not adjusted to our dataset. Also, we
made no attempt to convert the model’s output (variance of a set of
statistics) to a single d’ measure. In contrast, the feature sampling
simulation was purely conceptual. By design, it provided a d’ output so
its parameters could be fitted to the data. Therefore, we do not wish to
imply that one model “outperformed” the other. Instead, our point is
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that both approaches can predict the general decrease in performance
with duration — which was expected for summary statistics, but perhaps
less obvious for local features sampling. Moreover, the two underlying
representations need not be exclusive to each other (see Subsection 6.4).

As the application of local features sampling to auditory repetition-
detection is novel, we focus the rest of this subsection on its strengths
and shortcomings. First, for the shortcomings, unrealistic assumptions
were made in our simulations. To cite a few, all possible features for a
texture category were equally likely to appear for a given texture
exemplar; all features for a texture type had the same duration; all
features were equally likely to be sampled. These assumptions were
made to keep the simulation as close as possible to its core principles and
thus clarify the intuitions derived from stimulus sampling. For natural
textures, it is instead almost certain that some features will be more
likely to appear than others across exemplars, because of the physical
properties of the generative processes. Moreover, some features may
exhibit greater perceptually saliency than others and thus become more
likely to be sampled, contrary to the equiprobable sampling enforced
here. Future signal models implementing stimulus sampling for auditory
stimuli would need to address these shortcomings. In parallel, behav-
ioral experiments could try to characterize the local features that arise
from repeated natural textures, for instance by using a reverse correla-
tion approach (Kaernbach, 1993).

The local features sampling approach does open new perspectives,
however. Perhaps most importantly, it is congruent with introspection
when listening to repeated noises or textures: one clearly hears indi-
vidual “events” (Guttman & Julesz, 1963; Warren et al., 2001). The
simulations show that such sparse events could form the basis of
repetition-detection performance. Moreover, the formalism of the sim-
ulations suggests potential cognitive mechanisms for the auditory
repetition-detection task. Speculatively, the stimulus sampling process
could represent the transfer of a limited number of distinctive features
from implicit auditory sensory memory stores (Cowan, 1984; Kaern-
bach, 2004; Nees, 2016) to working memory (Schneegans et al., 2020).
To further account for the memory gain observed when a same exemplar
reoccurs many times, one could hypothesize that reoccurring features
are transferred from working memory to long-term memory, with
memorized features more likely to be sampled in future presentations.
Such a change in likelihood can naturally be introduced in the Poisson
sampling framework, through a change of feature weights (Schneegans
et al., 2020). Finally, there could be further possible refinements to the
sampling mechanism, for instance by introducing temporal decays on
the memory traces of features (Harrison, Bianco, Chait, & Pearce, 2020;
Kent et al., 2014). Those are beyond the scope of the present study but
would be useful to introduce further plausible constraints to cognitive
models of the repetition-detection task.

6.3. Is repetition special?

Given the similarity between results for artificial noise and natural
textures, it appears that the memory processes induced by repetition and
re-occurrence generalized to natural textures.

There are several speculative arguments suggesting that repetition
should be special for the auditory modality. From an acoustic point of
view, it is impossible to actively search “back in time” for additional
information once a sound has ended, unlike for visual search (Demany,
Semal, Cazalets, & Pressnitzer, 2010; Garnier-Allain, Pressnitzer, &
Sergent, 2023). Thus, the auditory system may have evolved to be
exquisitely tuned to repetitions, as they provide a unique opportunity to
re-examine auditory cues with a deeper level of processing. Also, scene
elements that reoccur likely indicate an agent in the environment that
may be behaviorally significant. Finally, in a Bayesian or predictive
coding framework, events that repeat in the past may reasonably be
assigned a higher-than-baseline probability of repeating in the future, so
repeated sounds should be expected to alter neural processing
(Baldeweg, 2006). Perhaps relatedly, repetitions have also been shown
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to change the very perceptual qualities of sound, such as in the speech-
to-song illusion (Deutsch, Henthorn, & Lapidis, 2011), which, interest-
ingly, generalizes to natural textures (Rowland, Kasdan, & Poeppel,
2019).

Thus, one interpretation of the present findings is that repetition
overcame a putative specialized processing mode for textures. If local
perceptual features could be preserved for at least the duration of an
exemplar, then an immediate repetition could be detected and a
“repetition mode” recruited. As subsequent re-occurrences of the texture
exemplar were presented, the preserved features could have been
consolidated into memory. Such a repetition-induced representation
could also be beneficial to auditory scene analysis, by creating fore-
ground events emerging from the background texture when repetition is
involved (McDermott, Wrobleski, & Oxenham, 2011). A feature-based
representation could of course co-exist with a summary statistics rep-
resentation, which would still be efficient for e.g. texture category
recognition. Such a possibility of different processing modes for natural
textures was floated in the original texture studies (McDermott et al.,
2013; Nelken & de Cheveigné, 2013). The present data provide exper-
imental support for the idea.

6.4. Time scales of representation

Another possible interpretation relies on a looser view of the di-
chotomy between local features versus summary statistics. Indeed, the
core difference between the two types of representations is the time
scale over which features versus statistics are estimated. Thus, there
could be an overlap between the two notions if auditory representations
were based on multiple or even flexible time scales of integration.

There is a large and growing body of evidence suggesting the audi-
tory system represents sounds over different time scales, from behav-
ioral (Divenyi, 2004; Teng et al., 2016) or neural findings (Asokan,
Williamson, Hancock, & Polley, 2021; Joris, Schreiner, & Rees, 2004;
Norman-Haignere et al., 2022). The details of the associated theories
differ on important points, such as whether all time scales within the
possible range are available simultaneously, whether they depend on the
task and context (McWalter & McDermott, 2019 in the case of natural
textures), or whether a limited number of fixed windows exist to encode
fine and coarse details (Teng et al., 2016). However, all accounts suggest
that short and long time-scales may coexist in the auditory representa-
tions of complex sounds.

As a result, the boundary between a relatively long-duration feature
and a relatively short-duration statistic becomes blurry. Furthermore,
the modeling results presented here show that representations based on
either long-duration statistics or short-duration local features could
provide qualitatively similar predictions, both in line with the behav-
ioral data. Thus, instead of a dichotomy in kind, we suggest that the
features versus statistics distinction may better be thought of in terms of
a continuum over different time scales.

7. Conclusion

We have shown that naturalistic texture exemplars are amenable to
learning when repeated exposure is available. In this respect, natural
textures join the growing list of stochastic sounds that behave surpris-
ingly similarly in a memory for noise paradigm. This main finding is
consistent with two interpretations: the existence of a special processing
mode when acoustic repetition is involved, to which natural textures are
not immune, or a convergence of the feature set versus summary sta-
tistics representations, if a continuum of time scales is considered.

Whereas the computational appeal of summarizing a texture to its
statistics is obvious, one may wonder what use there could be to store
the detailed acoustic features of a given exemplar? It could be that such a
finding is simply the by-product of powerful plasticity mechanisms
triggered by repetition, which are otherwise useful to generate sparse
representations of meaningful sounds (Wang et al., 2020). We speculate
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that, more generally, it is the sign of the auditory system adapting its
internal representations to the statistical regularities of its environment.
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